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HHL

quantum walks

1



QUANTUM PROBLEMS

QUBIT ENCODING

QUANTUM SIMULATION

VARIATIONAL QUANTUM ALGORITHMS

2



Quantum problems

“Nature isn’t classical, dammit, and if you want to make a sim-
ulation of Nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem because it doesn’t look
so easy.”

- R. Feynman, “Simulating physics with computers” (1981)
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Chemistry problems:

design chemicals, drugs,
reaction processes (e.g., carbon fixation, batteries)

potential energy surface (2-butene) reaction chain (carbon fixation)

need:
ground state energy, quantum dynamics

classical approaches (Hartree-Fock, DFT) often fall short
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Material science problems:

design of new materials,
study of fundamental physics

superconductivity Majorana fermions

classical theory (mean-field, band theory)
fails for strong interactions

e.g., Mott insulators

5



Quantum problems

input:
(description of) quantum system

goal:
predict properties

means:
(a) preparation of ground state

(b) simulation of quantum dynamics
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Quantum problems (formalized)

input:

Hamiltonian H

describes energy of the quantum system

(time-independent) Schrödinger’s equation:

H |ϕ⟩ = E |ϕ⟩
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classroom example: single quantum particle

wave function

ψ(x), x ∈ R

Hamiltonian

H = − 1
2m

∇+ V(x)

particle in a box double well potential
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chemistry example: molecular Hamiltonian

N-particle wave function ψ(x1, . . . , xN)

Hamiltonian

H = − 1
2m

∑
i

∇i︸ ︷︷ ︸
kinetic energy

−
∑
i,ℓ

1
|xi − Rℓ|︸ ︷︷ ︸

electron-nucleus

+
1
2

∑
i ̸=j

1
|xi − xj|︸ ︷︷ ︸

electron-electron
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condensed matter example: spin chain

basis state |z⟩ = |↑↓↑↑ . . . ↓⟩ = |1011 . . . 0⟩

classical Ising Hamiltonian

H = −
∑
⟨i,j⟩

ZiZj

using Zi |z⟩ = (−1)zi |z⟩ we have

H |z⟩ = −
∑
⟨i,j⟩

ZiZj |z⟩ = −
∑
⟨i,j⟩

(−1)zi+zj |z⟩ = E(z) |z⟩

basis states are eigenstates
energy E(z) measures # unaligned pairs
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quantum Ising Hamiltonian

H = −
∑
⟨i,j⟩

ZiZj︸ ︷︷ ︸
magnetic interaction

+
∑

i

Xi︸ ︷︷ ︸
external magnetic field

H |z⟩ ≠ Ez |z⟩: basis states no longer eigenstates

quantum eigenstates |ϕ⟩ =
∑

z∈{0,1}n αz |z⟩

! representation on classical computer: 2n bits
vs. representation on quantum computer: n qubits
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Quantum problems (formalized)

goal:
predict properties

static properties:
magnetization, conductivity, ground state energy

dynamic properties:
tunnelling probability, reaction rate

quantum Hall effect chemical catalysis
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via “observables”

= Hermitian matrix A,
expected outcome ⟨ϕ|A|ϕ⟩

energy: A = H

magnetization / correlation: A = ZiZj

e.g., Ising model:

high energy, low magnetization low energy, high magnetization
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Quantum problems (formalized)

means:

(a) preparation of ground state

|ν0⟩ = argmin|ψ⟩ ⟨ψ|H|ψ⟩

maybe thermal or Gibbs state
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(b) simulation of quantum dynamics

via (time-dependent) Schrödinger’s equation

∂

∂t
|ψ(t)⟩ = −iH |ψ(t)⟩

with solution

|ψ(t)⟩ = e−iHt |ψ(0)⟩ ,

where

e−iHt =

∞∑
k=0

1
k!
(−iHt)k

EX: verify this
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Can quantum computers solve all quantum problems?
(given “good” representation of state space and Hamiltonian)

yes for simulating quantum dynamics

(probably) no for preparing ground states

e.g., 2-local ZX Hamiltonian

H =
∑

i

aiZi + biXi +
∑

i,j

ci,jZiXj

is “QMA-complete”
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Qubit encoding:

mapping physical system to qubit Hamiltonian

−→
?
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Example 1: quantum Ising model

H = a
∑
⟨i,j⟩

ZiZj + b
∑

i

Xi

1-to-1 correspondence between spins and qubits

↔ |z⟩ = |↑↓↑↑ . . . ↓⟩ = |1011 . . . 0⟩
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Quantum encoding 2: Fermi-Hubbard model

fermions hopping on lattice

H = t
∑
⟨i,j⟩,σ

c†i,σcj,σ + U
∑

i

ni,↑ni,↓

Jordan-Wigner transformation maps fermions to qubits
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Quantum encoding 3:

“molecular Hamiltonian”

H = −
∑

i

∇i −
∑
ℓ

∇ℓ −
∑

i,ℓ

1
|xi − Rℓ|

+
∑
i̸=j

1
|xi − xj|

+
∑
k ̸=ℓ

1
|Rk − Rℓ|

↓ (Born-Oppenheimer approximation)

“electronic Hamiltonian” H = −
∑

i

∇i −
∑

i,ℓ

1
|xi − Rℓ|

+
∑
i ̸=j

1
|xi − xj|

↓ (orbitals + second quantization)

“fermionic Hamiltonian” H =
∑

⟨i,j,k,ℓ⟩

aijkℓc†i c†j ckcℓ

↓ (Jordan-Wigner)

“qubit Hamiltonian” H =
∑

i

aiZi + biXi +
∑

i,j

ci,jZiXj
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Quantum simulation:
or “quantum numerical methods”

input: qubit Hamiltonian

H =
∑
ℓ

Hℓ

assumption:
Hℓ’s are k-local

goal:
Hamiltonian simulation
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by assumption: individual terms Hℓ easy to simulate

e.g., Ising model: terms Hℓ = ZiZj
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EX: define

e−iθZ ≡
[

e−iθ 0
0 eiθ

]
≡

show that

and

e−iθX ≡
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unfortunately,

eiHt = ei(
∑

ℓ Hℓ)t ̸=
∏
ℓ

eiHℓt

due to non-commutativity: AB ̸= BA
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main technique: Trotterization

eiHt = lim
r→∞

(
eiH1t/reiH2t/r . . . eiHmt/r

)r

=
(

eiH1t/reiH2t/r . . . eiHmt/r
)r

+ O(t2/r)
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EX: Lie-Trotter formula

consider A,B Hermitian and ∥A∥, ∥B∥ ≤ 1

for 0 < δ < 1, show that

e(A+B)δ = eAδeBδ + O(δ2)
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Trotter complexity:

error is ε-small if we pick

r ∼ t2/ε

higher (k-th) order formulas:

r ∼ t1+1/k/ε1/k
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Quantum simulation: recent developments

“optimal” Hamiltonian simulation in time

t + log(1/ε)

interesting challenges:
− time-dependent Hamiltonians (e.g., annealing)

− better understanding of Trotterization

Hamiltonian simulation = driving force in quantum algorithms

led to “quantum singular value transformation”
= grand unification of quantum algorithms
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variational principle

ground state energy

λ0 = min
|ψ⟩

⟨ψ|H|ψ⟩

ground state

|ν0⟩ = argmin|ψ⟩ ⟨ψ|H|ψ⟩

→ optimization problem!
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variational quantum algorithms

parameterized quantum gate (example)

parameterized quantum circuit
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let

|ψ(θ⃗)⟩ = U(θ⃗) |0⟩

and rephrase

min
|ψ⟩

⟨ψ|H|ψ⟩

as

min
θ⃗

⟨ψ(θ⃗)|H|ψ(θ⃗)⟩
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optimization over parameters θ⃗

considerations:
− choice parameterized circuit U(θ⃗)

− tuning of parameters θ
− energy measurement
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choice parameterized circuit U(θ⃗)

different ansätze

e.g., “Hamiltonian variational ansatz”
inspired by adiabatic algorithm

care about expressibility, symmetry preservation

tuning of θ⃗:

classical optimization problem
(= “hybrid” quantum algorithm)

mostly heuristic art
seems to work well
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energy estimation:

given: (encoding of) Hamiltonian H, state |ϕ⟩

goal: estimate energy

⟨ϕ|H|ϕ⟩

38



solution 1: quantum phase estimation

lemma: given |ϕ⟩ such that U |ϕ⟩ = ei2πθ |ϕ⟩,
can estimate θ to precision ε with O(1/ε) calls to U.

→ set U = eiH using Hamiltonian simulation
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solution 2: expanding Hamiltonian

H =
∑
ℓ

Hℓ

⟨ψ|H|ψ⟩ =
∑
ℓ

⟨ψ|Hℓ|ψ⟩

↓

suffices to estimate ⟨ψ|Hℓ|ψ⟩ for all ℓ ∈ [m]

# terms m often bounded
e.g., pairwise interactions → m ∈ O(n2)

40



EX:

measuring ⟨ψ|Z|ψ⟩:

recall the 1-qubit measurement

|ψ⟩ = α0 |0⟩+ α1 |1⟩
|0⟩ with probability |α0|2

|1⟩ with probability |α1|2

show that ⟨ψ|Z|ψ⟩ = 2|α0|2 − 1

measuring ⟨ψ|X|ψ⟩:

show that

|ψ⟩
|0⟩ with probability 1

2 |α0 + α1|2

|1⟩ with probability 1
2 |α0 − α1|2

and ⟨ψ|X|ψ⟩ = |α0 + α1|2 − 1
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EX: unitary Hamiltonian

consider U that is both unitary (U†U = I) and Hermitian (U = U†)

show that this circuit outputs “0” with probability

1 + ⟨ψ|U|ψ⟩
2
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