QUANTUM ALGORITHMS 2: QUANTUM SIMULATION AND CHEMISTRY

Simon Apers (CNRS & IRIF, Paris)

TUTORIAL 1: BASICS

quantum circuits quantum Fourier transform Grover search

TUTORIAL 2: CHEMISTRY

quantum problems quantum simulation variational quantum algorithms

TUTORIAL 3: OPTIMIZATION

adiabatic algorithm HHL quantum walks

QUANTUM PROBLEMS QUBIT ENCODING QUANTUM SIMULATION VARIATIONAL QUANTUM ALGORITHMS

Quantum problems

"Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem because it doesn't look so easy."

- R. Feynman, "Simulating physics with computers" (1981)

Chemistry problems:

design chemicals, drugs, reaction processes (e.g., carbon fixation, batteries)

potential energy surface (2-butene)

reaction chain (carbon fixation)

need: ground state energy, quantum dynamics

classical approaches (Hartree-Fock, DFT) often fall short

Material science problems:

design of new materials, study of fundamental physics

superconductivity

Majorana fermions

classical theory (mean-field, band theory) fails for strong interactions

e.g., Mott insulators

Quantum problems

input: (description of) quantum system

> goal: predict properties

means:

(a) preparation of ground state(b) simulation of quantum dynamics

Quantum problems (formalized) input:

Hamiltonian H

describes energy of the quantum system

(time-independent) Schrödinger's equation:

$$H\left|\phi\right\rangle = E\left|\phi\right\rangle$$

classroom example: single quantum particle

wave function

 $\psi(x), x \in \mathbb{R}$

Hamiltonian $H = -\frac{1}{2m}\nabla + V(x)$

particle in a box

double well potential

chemistry example: molecular Hamiltonian

condensed matter example: spin chain

basis state $|z\rangle = |\uparrow\downarrow\uparrow\uparrow\ldots\downarrow\rangle = |1011\ldots0\rangle$

classical Ising Hamiltonian

$$H = -\sum_{\langle i,j\rangle} Z_i Z_j$$

using $Z_i \ket{z} = (-1)^{z_i} \ket{z}$ we have

$$H \ket{z} = -\sum_{\langle i,j
angle} Z_i Z_j \ket{z} = -\sum_{\langle i,j
angle} (-1)^{z_i + z_j} \ket{z} = E(z) \ket{z}$$

basis states are eigenstates energy E(z) measures # unaligned pairs quantum Ising Hamiltonian

 $H |z\rangle \neq E_z |z\rangle$: basis states no longer eigenstates quantum eigenstates $|\phi\rangle = \sum_{z \in \{0,1\}^n} \alpha_z |z\rangle$

! representation on classical computer: 2^n bits vs. representation on quantum computer: *n* qubits Quantum problems (formalized)

goal: predict properties

static properties:

magnetization, conductivity, ground state energy

dynamic properties: tunnelling probability, reaction rate

via "observables"

= Hermitian matrix A, expected outcome $\langle \phi | A | \phi \rangle$

energy: A = H

magnetization / correlation: $A = Z_i Z_j$

e.g., Ising model:

high energy, low magnetization

low energy, high magnetization

Quantum problems (formalized) means:

(a) preparation of ground state

$$|\nu_0\rangle = \operatorname{argmin}_{|\psi\rangle} \langle \psi | H | \psi \rangle$$

maybe thermal or Gibbs state

(b) simulation of quantum dynamics

via (time-dependent) Schrödinger's equation

$$\frac{\partial}{\partial t} \left| \psi(t) \right\rangle = -i H \left| \psi(t) \right\rangle$$

with solution

$$\left|\psi(t)\right\rangle = e^{-iHt} \left|\psi(0)\right\rangle,$$

where

$$e^{-iHt} = \sum_{k=0}^{\infty} \frac{1}{k!} (-iHt)^k$$

EX: verify this

Can quantum computers solve all quantum problems? (given "good" representation of state space and Hamiltonian)

yes for simulating quantum dynamics

(probably) no for preparing ground states

e.g., 2-local ZX Hamiltonian

$$H = \sum_{i} a_i Z_i + b_i X_i + \sum_{i,j} c_{i,j} Z_i X_j$$

is "QMA-complete"

References

- Quantum chemistry background: McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C., & Yuan, X. (2020). Quantum computational chemistry. Reviews of Modern Physics, 92(1), 015003
- Examples: Bauer, Bravyi, Motta, & Chan (2020). Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120(22), 12685-12717
- Algorithmic challenges: Clinton, Cubitt, Flynn, Gambetta, Klassen, Montanaro, Piddock, Santos, Sheridan (2022). Towards near-term quantum simulation of materials. TQC'23, arXiv:2205.15256
- Case study (carbon fixation): von Burg, V., Low, G. H., Häner, T., Steiger, D. S., Reiher, M., Roetteler, M., & Troyer, M. (2021). Quantum computing enhanced computational catalysis. Physical Review Research, 3(3), 033055

QUANTUM PROBLEMS

QUANTUM SIMULATION

VARIATIONAL QUANTUM ALGORITHMS

Qubit encoding:

mapping physical system to qubit Hamiltonian

Example 1: quantum Ising model

$$H = a \sum_{\langle i,j
angle} Z_i Z_j + b \sum_i X_i$$

1-to-1 correspondence between spins and qubits

$$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow = |\uparrow\downarrow\uparrow\uparrow\ldots\downarrow\rangle = |1011\ldots0\rangle$$

Quantum encoding 2: Fermi-Hubbard model

fermions hopping on lattice

$$H = t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

Jordan-Wigner transformation maps fermions to qubits

Quantum encoding 3:

"molecular Hamiltonian"

$$H = -\sum_{i} \nabla_{i} - \sum_{\ell} \nabla_{\ell} - \sum_{i,\ell} \frac{1}{|x_{i} - R_{\ell}|} + \sum_{i \neq j} \frac{1}{|x_{i} - x_{j}|} + \sum_{k \neq \ell} \frac{1}{|R_{k} - R_{\ell}|}$$

 \downarrow (Born-Oppenheimer approximation)

"electronic Hamiltonian"
$$H = -\sum_{i} \nabla_i - \sum_{i,\ell} \frac{1}{|x_i - R_\ell|} + \sum_{i \neq j} \frac{1}{|x_i - x_j|}$$

 \downarrow (orbitals + second quantization)

"fermionic Hamiltonian" $H = \sum_{\langle i,j,k,\ell
angle} a_{ijk\ell} c_i^{\dagger} c_j^{\dagger} c_k c_\ell$

 \downarrow (Jordan-Wigner)

"qubit Hamiltonian"
$$H = \sum_{i} a_i Z_i + b_i X_i + \sum_{i,j} c_{i,j} Z_i X_j$$

QUANTUM PROBLEMS QUBIT ENCODING QUANTUM SIMULATION

VARIATIONAL QUANTUM ALGORITHMS

Quantum simulation: or "quantum numerical methods"

input: qubit Hamiltonian

$$H = \sum_{\ell} H_{\ell}$$

assumption: H_{ℓ} 's are *k*-local

goal: Hamiltonian simulation

by assumption: individual terms H_{ℓ} easy to simulate

$$e^{iH_{\ell}t}$$

e.g., Ising model: terms $H_{\ell} = Z_i Z_j$

EX: define

$$e^{-i\theta Z} \equiv \begin{bmatrix} e^{-i\theta} & 0\\ 0 & e^{i\theta} \end{bmatrix} \equiv - \boxed{R_z(\theta)}$$

show that

$$-X - \equiv -H - Z - H -$$

$$e^{-i\theta X} \equiv -H R_z(\theta) H$$

unfortunately,

$$e^{iHt} = e^{i\left(\sum_{\ell}H_{\ell}\right)t} \neq \prod_{\ell}e^{iH_{\ell}t}$$

$$-\underline{e^{iHt}} - \neq -\underline{e^{iH_1t}} - \cdots - \underline{e^{iH_mt}} -$$

due to non-commutativity: $AB \neq BA$

main technique: Trotterization

$$e^{iHt} = \lim_{r \to \infty} \left(e^{iH_1t/r} e^{iH_2t/r} \dots e^{iH_mt/r} \right)^r$$
$$= \left(e^{iH_1t/r} e^{iH_2t/r} \dots e^{iH_mt/r} \right)^r + O(t^2/r)$$

EX: Lie-Trotter formula

consider *A*, *B* Hermitian and $||A||, ||B|| \le 1$

for $0 < \delta < 1$, show that

$$e^{(A+B)\delta} = e^{A\delta}e^{B\delta} + O(\delta^2)$$

Trotter complexity:

error is ε -small if we pick

 $r \sim t^2 / \varepsilon$

higher (k-th) order formulas:

 $r \sim t^{1+1/k} / \varepsilon^{1/k}$

Quantum simulation: recent developments

"optimal" Hamiltonian simulation in time $t + \log(1/\varepsilon)$

interesting challenges: - time-dependent Hamiltonians (e.g., annealing) - better understanding of Trotterization

Hamiltonian simulation = driving force in quantum algorithms

led to "quantum singular value transformation" = grand unification of quantum algorithms

QUANTUM PROBLEMS QUBIT ENCODING QUANTUM SIMULATION

VARIATIONAL QUANTUM ALGORITHMS

variational principle

ground state energy

 $\lambda_0 = \min_{|\psi\rangle} \langle \psi | H | \psi \rangle$

ground state

 $|\nu_0
angle = \operatorname{argmin}_{|\psi
angle} \langle \psi | H | \psi
angle$

 \rightarrow optimization problem!

variational quantum algorithms

parameterized quantum gate (example)

$$\underbrace{U(\theta)}_{=} \equiv \underbrace{\Phi}_{R_z(\theta)}_{H_{-}}$$

parameterized quantum circuit

optimization over parameters $\vec{\theta}$

considerations:

- choice parameterized circuit $U(\vec{ heta})$
 - tuning of parameters θ
 - energy measurement

choice parameterized circuit $U(\vec{\theta})$

different ansätze

e.g., "Hamiltonian variational ansatz" inspired by adiabatic algorithm

care about expressibility, symmetry preservation

tuning of $\vec{\theta}$:

classical optimization problem (= "hybrid" quantum algorithm)

mostly heuristic art seems to work well

energy estimation:

given: (encoding of) Hamiltonian *H*, state $|\phi\rangle$

goal: estimate energy

 $\langle \phi | H | \phi \rangle$

solution 1: quantum phase estimation

lemma: given $|\phi\rangle$ such that $U |\phi\rangle = e^{i2\pi\theta} |\phi\rangle$, can estimate θ to precision ε with $O(1/\varepsilon)$ calls to U.

 \rightarrow set $U = e^{iH}$ using Hamiltonian simulation

solution 2: expanding Hamiltonian

$$H = \sum_{\ell} H_{\ell}$$

$$\langle \psi | H | \psi \rangle = \sum_{\ell} \langle \psi | H_{\ell} | \psi \rangle$$

 \downarrow

suffices to estimate $\langle \psi | H_{\ell} | \psi \rangle$ for all $\ell \in [m]$

terms *m* often bounded e.g., pairwise interactions $\rightarrow m \in O(n^2)$

EX:

measuring $\langle \psi | Z | \psi \rangle$:

recall the 1-qubit measurement

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

 $|0\rangle$ with probability $|\alpha_0|^2$
 $|1\rangle$ with probability $|\alpha_1|^2$

show that
$$\langle \psi | Z | \psi \rangle = 2 |\alpha_0|^2 - 1$$

measuring $\langle \psi | X | \psi \rangle$:

show that

$$|\psi\rangle$$
 — H — H — H = $|0\rangle$ with probability $\frac{1}{2}|\alpha_0 + \alpha_1|^2$
 $|1\rangle$ with probability $\frac{1}{2}|\alpha_0 - \alpha_1|^2$

and $\langle \psi | X | \psi \rangle = | \alpha_0 + \alpha_1 |^2 - 1$

EX: unitary Hamiltonian

consider U that is both unitary ($U^{\dagger}U = I$) and Hermitian ($U = U^{\dagger}$)

show that this circuit outputs "0" with probability

$$\frac{1 + \langle \psi | U | \psi \rangle}{2}$$

Figure references

PES: Kwon, Hyuk-Yong, et al. "Interpolation methods for molecular potential energy surface construction." The Journal of Physical Chemistry A 125.45 (2021): 9725-9735.

Carbon fixation: https://www.microsoft.com/en-us/research/blog/state-of-the-art-algorithm-accelerates-path-for-quantum-computers-to-address-climate-change/

H2O molecule: https://www.e-education.psu.edu/earth111/node/838

spin chain: https://labsites.rochester.edu/nicholgroup/research/

Hall effect: https://en.wikipedia.org/wiki/Quantum_Hall_effect

catalyst: https://www.thoughtco.com/definition-of-catalyst-604402

Ising model: https://rf.mokslasplius.lt/ising-model/

Hubbard model: https://en.wikipedia.org/wiki/Hubbard_model