QUANTUM ALGORITHMS 1: CIRCUITS, QFT AND GROVER

Simon Apers (CNRS & IRIF, Paris) tutorial = overview $(2h)$ + exercises $(2h)$

TUTORIAL 1: BASICS

quantum circuits quantum Fourier transform Grover search

TUTORIAL 2: CHEMISTRY

Hamiltonian simulation energy estimation variational quantum algorithms

TUTORIAL 3: OPTIMIZATION

adiabatic algorithm HHL quantum walks

CIRCUITS QFT GROVER

quantum state on 1 qubit

$$
|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \qquad \qquad
$$

unitary dynamics

$$
|\psi\rangle \longrightarrow U \longrightarrow |\psi'\rangle = U |\psi\rangle = \begin{bmatrix} U_{00} & U_{10} \\ U_{01} & U_{11} \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}
$$

measurement

 $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ $\longrightarrow |\sim|$ $|0\rangle$ with probability $|\alpha_0|^2$ $|1\rangle$ with probability $|\alpha_1|^2$ Hadamard gate

$$
\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}
$$

such that

$$
|0\rangle \longrightarrow H \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)
$$

$$
|1\rangle \longrightarrow H \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$

X or NOT gate

≡ 0 1 1 0

Z gate

$$
\begin{array}{c}\n-\boxed{Z} \\
\end{array} \equiv \begin{bmatrix} 1 & 0 \\
0 & -1 \end{bmatrix}
$$

phase or *T* gate

$$
\begin{array}{c}\n-T \quad \text{=}\n\begin{bmatrix}\n1 & 0 \\
0 & e^{i\pi/4}\n\end{bmatrix}\n\end{array}
$$

EX: what is the outcome of the following circuits?

quantum states on *n* qubits $(N = 2ⁿ)$:

basis state ($z \in \{0,1\}^n$)

superposition

$$
|\psi\rangle = \sum_{z \in \{0,1\}^n} \alpha_z |z\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{N-1} \end{bmatrix}
$$

unitary dynamics

measurement

controlled unitary

such that

EX:

what is the outcome of the following circuits?

universality:

any unitary operation can be approximated with

{1-qubit gates, *CNOT*}

or

{*H*, *T*, *CNOT*}

or

{*H*, *CCNOT*}

quantum oracle/RAM query (for function *f*)

$$
\begin{array}{c}\n|z\rangle & -\\
|w\rangle & -\n\end{array}
$$

such that

$$
O\ket{z}\ket{0} = \ket{z} f(z)
$$

and

$$
O\left(\sum_z \alpha_z \left|z\right\rangle\left|0\right\rangle\right) = \sum_z \alpha_z \left|z\right\rangle\left|f(z)\right\rangle
$$

EX: which function does CNOT evaluate?

CIRCUITS QFT GROVER

discrete Fourier transform $F_N: \mathbb{C}^N \to \mathbb{C}^N$

$$
F_N = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega_N & \dots & \omega_N^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_N^{N-1} & \dots & \omega_N^{(N-1)(N-1)} \end{bmatrix}, \quad \omega_N = e^{i2\pi/N}
$$

Fourier modes

$$
F_N \left| k \right\rangle = \left| \tilde{k} \right\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega_N^{jk} \left| j \right\rangle
$$

! F_N unitary matrix on $n = \log(N)$ qubits

lemma: can implement F_N using $O(n^2)$ 2-qubit gates

application 1: quantum phase estimation (Kitaev '95)

goal: find θ

Kitaev '95: ε-approximation of θ with $O(1/\varepsilon)$ calls to *U* and 1 copy of $|\phi\rangle$

(details in exercises)

application 2: quantum period finding

given: oracle
$$
|z\rangle
$$
 $|z\rangle$ with $f : \mathbb{N} \to [N]$
\n $|w\rangle$ $|z\rangle$ with $f : \mathbb{N} \to [N]$
\n $|w \oplus f(z)\rangle$ with $f : \mathbb{N} \to [N]$
\n $|z\rangle$ with $f : \mathbb{N} \to [N]$

goal: find *r*

Shor '94:

- 1. factoring and discrete log reduce to period finding
	- 2. quantum algorithm with polylog(*N*) calls to *O*

CIRCUITS QFT **GROVER**

problem: unstructured search

given: oracle access to $f : [N] \rightarrow \{0, 1\}$ promise: unique *x* s.t. $f(x) = 1$

goal: find *x*

Grover '96:

O(√ *N*) quantum queries vs *O*(*N*) classical queries reflection 1: phase oracle

$$
|x\rangle - O - (-1)^{f(x)} |x\rangle
$$

reflection 2: around $\ket{\pi} \coloneqq \frac{1}{\sqrt{2}}$ $\frac{1}{\overline{N}}$ ∑_{y∈[}*N*] $|y\rangle$

$$
|\pi\rangle \left\langle \begin{array}{c|c} R_{\pi} & & |\pi\rangle \end{array} \right.
$$

$$
|\pi\rangle \perp |\phi\rangle \left| \begin{array}{c|c} - & - & |\phi\rangle \end{array} \right.
$$

s.t.

$$
-\boxed{R_\pi}-\ \equiv\ 2\ket{\pi}\bra{\pi}-I
$$

Grover operator

$$
-G-\equiv -R_{\pi} - O
$$

rewriting $|\pi\rangle=\sin\theta\,|x\rangle+\cos\theta\,|\pi'\rangle$ we get

Grover's algorithm

$$
|0^n\rangle-\fbox{H_N}\fbox{$\underbrace{G$}\fbox{\cdots}\fbox{$\underbrace{G$}\fbox{\smile}\fbox{\smile}}_{k}\fbox{\smile}\fbox{\smile}\fbox{\smile}\fbox{\smile}
$$

$$
G^k |\pi\rangle = \sin((1+2k)\theta) |x\rangle + \cos((1+2k)\theta) |\pi'\rangle
$$

finds *x* with constant probability after *k* ∈ *O*(√ *N*) iterations matching $\Omega(\sqrt{N})$ lower bound

for *M* marked elements: $\mathsf{complexity}\ \Theta(\sqrt{N/M})$

generalizations:

- amplitude amplification
- quantum mean estimation