QUANTUM ALGORITHMS 1: CIRCUITS, QFT AND GROVER

$$|0^n\rangle - H_N - G - G$$

Simon Apers (CNRS & IRIF, Paris)

tutorial = overview (2h) + exercises (2h)

TUTORIAL 1: BASICS

quantum circuits
quantum Fourier transform
Grover search

TUTORIAL 2: CHEMISTRY

Hamiltonian simulation energy estimation variational quantum algorithms

TUTORIAL 3: OPTIMIZATION

adiabatic algorithm

HHL

quantum walks

ı

CIRCUITS

QFT

GROVER

quantum state on 1 qubit

unitary dynamics

$$|\psi\rangle$$
 — U — $|\psi'\rangle = U |\psi\rangle = \begin{bmatrix} U_{00} & U_{10} \\ U_{01} & U_{11} \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$

measurement

$$|\psi\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$$
 — $|0\rangle$ with probability $|\alpha_0|^2$ $|1\rangle$ with probability $|\alpha_1|^2$

Hadamard gate

$$--\underline{H} - \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

such that

$$|0\rangle$$
 H $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

$$|1\rangle$$
 H $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

X or NOT gate

$$\longrightarrow \qquad \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Z gate

$$- \boxed{Z} - \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

phase or T gate

EX: what is the outcome of the following circuits?

quantum states on n qubits ($N = 2^n$):

basis state ($z \in \{0,1\}^n$)

superposition

$$|\psi\rangle = \sum_{z \in \{0,1\}^n} \alpha_z |z\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{N-1} \end{bmatrix} \qquad \frac{-----}{-----}$$

unitary dynamics

measurement

controlled unitary

such that

EX:

fill in:

what is the outcome of the following circuits?

$$|0\rangle$$
 H

universality:

any unitary operation can be approximated with

```
\{ 	ext{1-qubit gates}, 	ext{$CNOT} \} or \{ H, T, 	ext{$CNOT} \} or \{ H, 	ext{$CCNOT} \}
```

quantum oracle/RAM query (for function *f*)

$$\begin{array}{c|c} |z\rangle & & & \\ |w\rangle & & & |w \oplus f(z)\rangle \end{array}$$

such that

$$O|z\rangle|0\rangle = |z\rangle|f(z)\rangle$$

and

$$O\left(\sum_{z} \alpha_{z} |z\rangle |0\rangle\right) = \sum_{z} \alpha_{z} |z\rangle |f(z)\rangle$$

EX: which function does CNOT evaluate?

CIRCUITS

QFT

GROVER

discrete Fourier transform $F_N: \mathbb{C}^N \to \mathbb{C}^N$

$$F_N = rac{1}{\sqrt{N}} egin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega_N & \dots & \omega_N^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_N^{N-1} & \dots & \omega_N^{(N-1)(N-1)} \end{bmatrix}, \quad \omega_N = e^{i2\pi/N}$$

Fourier modes

$$F_N \ket{k} = \ket{\tilde{k}} = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega_N^{jk} \ket{j}$$

! F_N unitary matrix on $n = \log(N)$ qubits

lemma:

can implement F_N using $O(n^2)$ 2-qubit gates

application 1: quantum phase estimation (Kitaev '95)

given: circuit
$$U$$
 , state $|\phi\rangle$ U

promise:
$$|\phi\rangle$$
 U $e^{i2\pi\theta}$ $|\phi\rangle$

goal: find θ

Kitaev '95:

 $\varepsilon\text{-approximation of }\theta\text{ with }O(1/\varepsilon)\text{ calls to }U\text{ and 1 copy of }|\phi\rangle$

(details in exercises)

application 2: quantum period finding

given: oracle
$$\begin{vmatrix} |z\rangle & ---- & |z\rangle \\ |w\rangle & ---- & |w\oplus f(z)\rangle \end{vmatrix}$$
 with $f:\mathbb{N}\to [N]$

promise: period r s.t. f(a) = f(b) iff $a = b \pmod{r}$

goal: find r

Shor '94:

- 1. factoring and discrete log reduce to period finding
 - 2. quantum algorithm with polylog(N) calls to O

CIRCUITS

QFT

GROVER

problem: unstructured search

given: oracle access to $f:[N] \rightarrow \{0,1\}$

promise: unique x s.t. f(x) = 1

goal: find x

Grover '96:

 $O(\sqrt{N})$ quantum queries vs O(N) classical queries

reflection 1: phase oracle

$$|x\rangle$$
 O $(-1)^{f(x)}|x\rangle$

reflection 2: around $|\pi\rangle\coloneqq \frac{1}{\sqrt{N}}\sum_{y\in[N]}|y\rangle$

$$|\pi\rangle$$
 $-R_{\pi}$ $-|\pi\rangle$ $|\pi\rangle \perp |\phi\rangle$ $-R_{\pi}$ $-|\phi\rangle$

s.t.

$$-R_{\pi} = 2 |\pi\rangle \langle \pi| - I$$

Grover operator

$$-\boxed{G} - \equiv -\boxed{R_{\pi}} - \boxed{O} -$$

rewriting $|\pi\rangle = \sin\theta\,|x\rangle + \cos\theta\,|\pi'\rangle$ we get

Grover's algorithm

$$|0^n\rangle$$
 $-H_N$ G $-G$

$$G^{k}|\pi\rangle = \sin((1+2k)\theta)|x\rangle + \cos((1+2k)\theta)|\pi'\rangle$$

finds x with constant probability after $k \in O(\sqrt{N})$ iterations

matching $\Omega(\sqrt{N})$ lower bound

for
$$M$$
 marked elements: complexity $\Theta(\sqrt{N/M})$

generalizations:

- amplitude amplification
- quantum mean estimation