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quantum state on 1 qubit

|ψ⟩ = α0 |0⟩+ α1 |1⟩ =
[
α0
α1

]

unitary dynamics

|ψ⟩ |ψ′⟩ = U |ψ⟩ =
[

U00 U10
U01 U11

] [
α0
α1

]

measurement

|ψ⟩ = α0 |0⟩+ α1 |1⟩
|0⟩ with probability |α0|2

|1⟩ with probability |α1|2
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Hadamard gate

≡ 1√
2

[
1 1
1 −1

]

such that

|0⟩ 1√
2
(|0⟩+ |1⟩)

|1⟩ 1√
2
(|0⟩ − |1⟩)
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X or NOT gate

≡
[

0 1
1 0

]

Z gate

≡
[

1 0
0 −1

]

phase or T gate

≡
[

1 0
0 eiπ/4

]

4



X or NOT gate

≡
[

0 1
1 0

]

Z gate

≡
[

1 0
0 −1

]

phase or T gate

≡
[

1 0
0 eiπ/4

]

4



X or NOT gate

≡
[

0 1
1 0

]

Z gate

≡
[

1 0
0 −1

]

phase or T gate

≡
[

1 0
0 eiπ/4

]

4



EX: what is the outcome of the following circuits?

|0⟩

|0⟩

|0⟩

|0⟩

5



quantum states on n qubits (N = 2n):

basis state (z ∈ {0, 1}n)

|z⟩ = |z1⟩ ⊗ · · · ⊗ |zn⟩ = |z1 . . . zn⟩
|z1⟩...
|zn⟩

superposition

|ψ⟩ =
∑

z∈{0,1}n αz |z⟩ =


α0
α1
...

αN−1



6



quantum states on n qubits (N = 2n):

basis state (z ∈ {0, 1}n)

|z⟩ = |z1⟩ ⊗ · · · ⊗ |zn⟩ = |z1 . . . zn⟩
|z1⟩...
|zn⟩

superposition

|ψ⟩ =
∑

z∈{0,1}n αz |z⟩ =


α0
α1
...

αN−1



6



quantum states on n qubits (N = 2n):

basis state (z ∈ {0, 1}n)

|z⟩ = |z1⟩ ⊗ · · · ⊗ |zn⟩ = |z1 . . . zn⟩
|z1⟩...
|zn⟩

superposition

|ψ⟩ =
∑

z∈{0,1}n αz |z⟩ =


α0
α1
...

αN−1



6



unitary dynamics

|ψ⟩ |ψ′⟩ = U |ψ⟩

measurement

|ψ⟩ =
∑

z∈{0,1}n αz |z⟩ |z⟩ with probability |αz|2
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unitary dynamics

|ψ⟩ |ψ′⟩ = U |ψ⟩

measurement

|ψ⟩ =
∑

z∈{0,1}n αz |z⟩ |z⟩ with probability |αz|2
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controlled unitary

such that

|0⟩

|ψ⟩

|0⟩

|ψ⟩

|1⟩

|ψ⟩

|0⟩

U |ψ⟩

8



controlled unitary

such that

|0⟩

|ψ⟩

|0⟩

|ψ⟩

|1⟩

|ψ⟩

|0⟩

U |ψ⟩

8



CNOT

CCNOT or Toffoli
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CNOT

CCNOT or Toffoli
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EX:

fill in:

≡


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


what is the outcome of the following circuits?

|0⟩

|0⟩

|0⟩

|0⟩
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universality:

any unitary operation can be approximated with

{1-qubit gates,CNOT}

or

{H,T,CNOT}

or

{H,CCNOT}
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quantum oracle/RAM query (for function f )

|z⟩
|w⟩

|z⟩
|w ⊕ f (z)⟩

such that

O |z⟩ |0⟩ = |z⟩ |f (z)⟩

and

O

(∑
z

αz |z⟩ |0⟩

)
=
∑

z

αz |z⟩ |f (z)⟩

EX: which function does CNOT evaluate?
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CIRCUITS

QFT

GROVER
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discrete Fourier transform FN : CN → CN

FN =
1√
N


1 1 . . . 1
1 ωN . . . ωN−1

N
...

...
. . .

...
1 ωN−1

N . . . ω
(N−1)(N−1)
N

 , ωN = ei2π/N

Fourier modes

FN |k⟩ = |k̃⟩ = 1√
N

N−1∑
j=0

ωjk
N |j⟩

14



discrete Fourier transform FN : CN → CN

FN =
1√
N


1 1 . . . 1
1 ωN . . . ωN−1

N
...

...
. . .

...
1 ωN−1

N . . . ω
(N−1)(N−1)
N

 , ωN = ei2π/N

Fourier modes

FN |k⟩ = |k̃⟩ = 1√
N

N−1∑
j=0

ωjk
N |j⟩

14



! FN unitary matrix on n = log(N) qubits

lemma:
can implement FN using O(n2) 2-qubit gates
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application 1: quantum phase estimation (Kitaev ’95)

given: circuit , state |ϕ⟩

promise: |ϕ⟩ ei2πθ |ϕ⟩

goal: find θ
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Kitaev ’95:
ε-approximation of θ with O(1/ε) calls to U and 1 copy of |ϕ⟩

(details in exercises)
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application 2: quantum period finding

given: oracle
|z⟩
|w⟩

|z⟩
|w ⊕ f (z)⟩

with f : N → [N]

promise: period r s.t. f (a) = f (b) iff a = b (mod r)

goal: find r
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Shor ’94:

1. factoring and discrete log reduce to period finding

2. quantum algorithm with polylog(N) calls to O
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problem: unstructured search

given: oracle access to f : [N] → {0, 1}

promise: unique x s.t. f (x) = 1

goal: find x

Grover ’96:
O(

√
N) quantum queries vs O(N) classical queries
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reflection 1: phase oracle

|x⟩ (−1)f (x) |x⟩

reflection 2: around |π⟩ := 1√
N

∑
y∈[N] |y⟩

|π⟩ |π⟩

|π⟩ ⊥ |ϕ⟩ − |ϕ⟩

s.t.

≡ 2 |π⟩ ⟨π| − I
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Grover operator

rewriting |π⟩ = sin θ |x⟩+ cos θ |π′⟩ we get
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Grover’s algorithm

Gk |π⟩ = sin((1 + 2k)θ) |x⟩+ cos((1 + 2k)θ) |π′⟩

finds x with constant probability after k ∈ O(
√

N) iterations
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matching Ω(
√

N) lower bound

for M marked elements:
complexity Θ(

√
N/M)

generalizations:
- amplitude amplification

- quantum mean estimation
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