
AQAlg: Advanced Quantum Algorithms 2023 - 2024

Lecture 9: Quantum walk search and collision finding

Lecturer: Simon Apers (apers@irif.fr)

1 Quantum walk search

Consider a graph G = (V,E) with |V | = n nodes and spectral gap δ. Let M ⊆ V denote a subset of
marked nodes of size |M | = m. Following the last exercise session, we have the following quantum
walk search algorithm:

1. Set up the stationary state

|π⟩ = 1√
n

∑
x∈V

|ψx⟩ .

2. Repeat O(
√
n/m) times:

(a) Reflect around marked subspace spanx∈M{|ψx⟩} (i.e., apply 2
∑

x∈M |ψx⟩ ⟨ψx| − I).

(b) Reflect around stationary state |π⟩ (i.e., apply 2 |π⟩ ⟨π| − I). We can do this using
O(1/

√
δ) QW steps (see exercises).

The resulting state will have a constant overlap with the marked state |πM ⟩ = 1√
m

∑
x∈M |ψx⟩, so

that measuring the state returns a marked element with constant probability.
We can summarize the (query) cost of the QW search algorithm using the following quantities:

� “Setup cost” S: the number of queries needed to create the initial state |π⟩ in step 1.

� “Checking cost” C: the number of queries needed to check whether an element is marked in
step 2.(a).

� “Update cost” U : the number of queries needed to implement a step of the QW.

The total cost (up to constants) is then

S +

√
n

m

(
C +

1√
δ
U
)
.

This algorithm is called the “MNRS algorithm”, after Magniez-Nayak-Roland-Santha [MNRS07].

2 Collision finding with quantum walk search

Assume that we are given an array of integers x1, x2, . . . , xN . A collision is a pair of distinct i, j
such that xi = xj . How many elements do we have to query in order to find a collision (or decide
that no collision exists)? Classically this essentially requires to query the full array, and so the
classical query complexity is Ω(N). In contrast, using an algorithm based on quantum walk search
we can find a collision with a sublinear number of queries.1

1While we focus on query complexity for ease of exposition, all algorithms can be implemented with a similar
runtime.

1

mailto:apers@irif.fr

Lecture 8: Quantum walk search and collision finding 2

The quantum walk algorithm for collision finding was proposed by Ambainis [Amb07]. The
algorithm runs quantum walk search over elements or “words” Y = (Y, xY), consisting of (i) a
size-k subset Y ⊆ [N], and (ii) the list xY of integers xj with index j ∈ Y . We call an element Y
marked if Y contains both indices of a collision (equivalently, xY must contain a collision).

Exercise 1. Let n =
(
N
k

)
denote the number of elements and m the number of marked elements.

Show that m/n ∈ Ω(k2/N2).

To use quantum walk search, we consider a graph G with vertex set V indexed by the elements
Y. There is an edge between Y = (Y, xY) and Y ′ = (Y ′, xY ′) if the subsets Y and Y ′ differ in
exactly one element (i.e., we can obtain Y ′ from Y by replacing one index). The resulting graph G
has n =

(
N
k

)
vertices and is k(n− k)-regular. It corresponds to a so-called Johnson graph, and one

can show that its spectral gap is δ ∈ Ω(1/k) when k ≪ n.
A star state |ψY⟩ centered on a vertex Y of G is given by the state

|ψY⟩ =
1√

k(n− k)

∑
Y ′∼Y

|Y,Y ′⟩ ,

where the sum runs over neighboring elements Y ′ of Y. The quantum walk search algorithm then
starts from the uniform superposition

|π⟩ = 1√
n

∑
Y

|ψY⟩ ,

and the algorithm has cost

S +
N

k
(
√
k U + C),

where U is the update cost or cost of implementing a single quantum walk step on the Johnson
graph G. We now bound the different costs.

For the checking cost C, note that we can check whether a given state |ψY⟩ is marked simply by
checking whether the list xY contains a collision. Since this list is given explicitly in the description
of |ψY⟩, this requires no queries and so C = 0.

The setup cost S amounts to creating the state |π⟩ = 1√
n

∑
Y |ψY⟩. We do this in a few steps.

First, we prepare the state 1√
n

∑
Y |Y⟩ |0⟩. This takes k queries. Then, we construct the mapping

Uψ defined by Uψ |Y⟩ |0⟩ = |ψY⟩. We do this in two steps:

|Y⟩ |0⟩ = |Y, xY ⟩ |0⟩
(i)7→ 1√

k(n− k)

∑
Y ′∼Y

|Y, xY ⟩ |Y ′, 0⟩

(ii)7→ 1√
k(n− k)

∑
Y ′∼Y

|Y, xY ⟩ |Y ′, xY ′⟩ = |ψY⟩ .

Step (i) requires no queries. Step (ii) amounts to gathering the elements xY ′ with index in Y ′. Since
xY ′ contains exactly one element not in xY , this requires exactly one query. The setup cost S is
hence roughly k.

Finally, we bound the cost U of a single call to the quantum walk operator W . Recall from last
lecture that W = S · C where S is a simple swap (i.e., S |Y,Y ′⟩ = |Y ′,Y⟩), requiring no queries,
and C = 2

(∑
Y |ψY⟩ ⟨ψY |

)
− I is a reflection around the star subspace. Using a similar trick as

before, we can implement the reflection C by making two calls to the preparation operator Uψ,
which requires a single query. This proves that the update cost U is O(1).

Lecture 8: Quantum walk search and collision finding 3

Exercise 2. Verify that C = UψR0U
†
ψ.

Combining these different arguments, we can bound the total cost by

S +

√
n

m

(
1√
δ
U + C

)
≈ k +

N√
k
.

If we set k = N2/3 then this yields a quantum algorithm for collision finding with complexity
Õ(N2/3). This is essentially optimal by the Ω(N2/3) lower bound of Aaronson and Shi [AS04].

References

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on
Computing, 37(1):210–239, 2007.

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM (JACM), 51(4):595–605, 2004.

[MNRS07] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via quan-
tum walk. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 575–584, 2007.

	Quantum walk search
	Collision finding with quantum walk search

