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Lecture 8: Quantum walk search

Lecturer: Simon Apers (apers@irif.fr)

1 Random walks: mixing time and hitting time

We consider a simple (undirected, unweighted) and d-regular graph G = (V,E) with |V| = n
vertices. A random walk on G starts from some initial vertex (sampled from a distribution pg
over V), and at every timestep hops uniformly at random to one of its d neighboring vertices. We
can describe the probability distribution after ¢ steps using a stochastic transition matrix P where
P,y =1/dif (z,y) € E and P,, = 0 otherwise. After ¢ steps the random walk distribution is

pt = P'po.

If the graph G is connected then P has a unique stationary distribution 7 such that Pr = m, and
moreover this is the unique eigenvalue-1 eigenvector of P.

Exercise 1. Using that G is regular, argue that 7 is the uniform distribution.

If in addition G is not bipartite, then p; converges to m as t — oo, irrespective of the initial
distribution pg. The time it takes to get close to 7 is quantified by the mizing time,

MT(e) = min{t | [[P'po — 7ll1 < e, Ypo}.

We can relate the mixing time to the spectral gap 0 of the transition matrix P. If we order the
(real) eigenvalues of P as 1 = A1 > Ay > -+ >\, > —1, then the spectral gap is defined as

d =1 —max{| A2, | A\n|}

The graph is connected and nonbipartite (i.e., has a finite mixing time) if and only if § > 0. In fact,

it holds that )
MT(e) € O < log n> .
1) €

A different quantity of interest is the random walk hitting time HT (M), defined with respect to
some subset of “marked” elements M C V of size |[M| = m. We define it as the expected number
of steps of a random walk, starting from the stationary distribution py = 7, until it hits an element
of M. The hitting time can also be bounded in terms of the spectral gap:

HT(M) € O <> .

2  Quantum walks

While a random walk is defined over the vertices of a graph, a quantum walk is defined over its
edges. Specifically, the state space of a quantum walk is spanned by states of the form |z,y) for
(z,y) € E. You can think about the first register as containing the “current” state x, while the
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second register contains the “next” state y. In that sense, we could implement a “step” of the
quantum walk through the shift operator S defined by

Slz,y) =y, ).

Instead of trivially repeating this, we alternate a step with a “coin toss” that mixes up the next
state. We define it using so-called star states |),) for x € V, defined as

1
|1/}z> = = Z ‘x7y>
\/g (z,y)EE

We can define a unitary coin toss operator C'(P) based on these star states. Specifically, the coin
toss implements a reflection around the star states:

C(P) =2 (Z |wz> <ww|> -1

zeV

The quantum walk operator W (P) is now described as

W(P) =S C(P).
z,y) g C(P)ﬂc,%x\L W(P)\w,y/)T
y

Figure 1: (1) A basis state |z, y) is identified with the (directed) edge (x,y). (m) The coin toss C(P)
maps an initial state |z, y) to a superposition of outgoing edges. (r) The shift S maps a state |x,y),
localized on node z, to a state |y, z), localized on node y.

Exercise 2. Show that the following quantum state is a stationary state of W(P):

1 1
|W>:ﬁzwz>:m Z |z, y) -

zeV (z,y)EE

This shows that the QW operator has an invariant eigenstate |7) that is a quantum version of
the RW stationary distribution 7. Similarly to the RW spectral gap §, we can define the gap A > 0
of the QW operator as the smallest nonzero phase such that e”?™® is an eigenvalue of W. The
following lemma shows that the quantum gap is quadratically larger than the random walk gap.

Lemma 1 ([Sze04]). If the Markov chain P has spectral gap &, then the quantum walk operator
W(P) has gap
A € Q(V6).
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3 Quantum walk search

Consider again a graph G = (V, E) with |V| = n nodes and spectral gap 6. Let M C V denote a
subset of marked nodes of size |M| = m. An implementation of Grover search corresponds to the
following;:

1. Set up the stationary state

1
™) = D).

zeV

2. Repeat O(y/n/m) times:

(a) Reflect around marked subspace span,¢/{|¢z)} (i.e., apply 2> 1/ |Ve) (V2| — I).
(b) Reflect around stationary state |7) (i.e., apply 2 |m) (7| — I).

The resulting state will have a constant overlap with the marked state |mar) = —= >, .y [¥2), s0

m
that measuring the state returns a marked element with constant probability.
The idea of quantum walk search is to implement the reflection around |7) using a quantum
walk. The resulting algorithm is called the “MNRS algorithm”, after Magniez-Nayak-Roland-Santha

[MNRS07].

Exercise 3 (Reflecting around |m)). We can use a quantum walk W(P) to reflect around the
quantum state |m), i.e., implement the map

V) = alm) + Blat) — (2|m) (7] = ) [¢) = a|m) = B|7).

Assume that [¢) = alm) + 32, Bjlvj) such that W(P)|m) = |r) and W(P)|v;) = 279 |v;) with
1/2 > |0;] > A > 0. We call A the spectral gap of the quantum walk. Argue that the following

circuit implements a reflection around |w) (QPE represents quantum phase estimation with respect
to W(P) to precision A/2).

1) — —
QPE QPE"
0) — —2(0){(0] — I |— —

How many calls does the circuit make to the quantum walk operator? Conclude that quantum walk
search finds a marked element using a number of quantum walk steps in

(%)
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