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1 Random walks: mixing time and hitting time

We consider a simple (undirected, unweighted) and d-regular graph G = (V,E) with |V | = n
vertices. A random walk on G starts from some initial vertex (sampled from a distribution p0
over V ), and at every timestep hops uniformly at random to one of its d neighboring vertices. We
can describe the probability distribution after t steps using a stochastic transition matrix P where
Px,y = 1/d if (x, y) ∈ E and Px,y = 0 otherwise. After t steps the random walk distribution is

pt = P tp0.

If the graph G is connected then P has a unique stationary distribution π such that Pπ = π, and
moreover this is the unique eigenvalue-1 eigenvector of P .

Exercise 1. Using that G is regular, argue that π is the uniform distribution.

If in addition G is not bipartite, then pt converges to π as t → ∞, irrespective of the initial
distribution p0. The time it takes to get close to π is quantified by the mixing time,

MT(ϵ) = min{t | ∥P tp0 − π∥1 ≤ ϵ, ∀p0}.

We can relate the mixing time to the spectral gap δ of the transition matrix P . If we order the
(real) eigenvalues of P as 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1, then the spectral gap is defined as

δ = 1−max{|λ2|, |λn|}.

The graph is connected and nonbipartite (i.e., has a finite mixing time) if and only if δ > 0. In fact,
it holds that

MT(ϵ) ∈ O

(
1

δ
log

n

ϵ

)
.

A different quantity of interest is the random walk hitting time HT(M), defined with respect to
some subset of “marked” elements M ⊆ V of size |M | = m. We define it as the expected number
of steps of a random walk, starting from the stationary distribution p0 = π, until it hits an element
of M . The hitting time can also be bounded in terms of the spectral gap:

HT(M) ∈ O

(
1

δ

n

m

)
.

2 Quantum walks

While a random walk is defined over the vertices of a graph, a quantum walk is defined over its
edges. Specifically, the state space of a quantum walk is spanned by states of the form |x, y⟩ for
(x, y) ∈ E. You can think about the first register as containing the “current” state x, while the
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second register contains the “next” state y. In that sense, we could implement a “step” of the
quantum walk through the shift operator S defined by

S |x, y⟩ = |y, x⟩ .

Instead of trivially repeating this, we alternate a step with a “coin toss” that mixes up the next
state. We define it using so-called star states |ψx⟩ for x ∈ V , defined as

|ψx⟩ =
1√
d

∑
(x,y)∈E

|x, y⟩ .

We can define a unitary coin toss operator C(P ) based on these star states. Specifically, the coin
toss implements a reflection around the star states:

C(P ) = 2

(∑
x∈V

|ψx⟩ ⟨ψx|

)
− I.

The quantum walk operator W (P ) is now described as

W (P ) = S · C(P ).

Figure 1: (l) A basis state |x, y⟩ is identified with the (directed) edge (x, y). (m) The coin toss C(P )
maps an initial state |x, y⟩ to a superposition of outgoing edges. (r) The shift S maps a state |x, y⟩,
localized on node x, to a state |y, x⟩, localized on node y.

Exercise 2. Show that the following quantum state is a stationary state of W (P ):

|π⟩ = 1√
n

∑
x∈V

|ψx⟩ =
1√
nd

∑
(x,y)∈E

|x, y⟩ .

This shows that the QW operator has an invariant eigenstate |π⟩ that is a quantum version of
the RW stationary distribution π. Similarly to the RW spectral gap δ, we can define the gap ∆ > 0
of the QW operator as the smallest nonzero phase such that ei2π∆ is an eigenvalue of W . The
following lemma shows that the quantum gap is quadratically larger than the random walk gap.

Lemma 1 ([Sze04]). If the Markov chain P has spectral gap δ, then the quantum walk operator
W (P ) has gap

∆ ∈ Ω(
√
δ).
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3 Quantum walk search

Consider again a graph G = (V,E) with |V | = n nodes and spectral gap δ. Let M ⊆ V denote a
subset of marked nodes of size |M | = m. An implementation of Grover search corresponds to the
following:

1. Set up the stationary state

|π⟩ = 1√
n

∑
x∈V

|ψx⟩ .

2. Repeat O(
√
n/m) times:

(a) Reflect around marked subspace spanx∈M{|ψx⟩} (i.e., apply 2
∑

x∈M |ψx⟩ ⟨ψx| − I).

(b) Reflect around stationary state |π⟩ (i.e., apply 2 |π⟩ ⟨π| − I).

The resulting state will have a constant overlap with the marked state |πM ⟩ = 1√
m

∑
x∈M |ψx⟩, so

that measuring the state returns a marked element with constant probability.
The idea of quantum walk search is to implement the reflection around |π⟩ using a quantum

walk. The resulting algorithm is called the “MNRS algorithm”, after Magniez-Nayak-Roland-Santha
[MNRS07].

Exercise 3 (Reflecting around |π⟩). We can use a quantum walk W (P ) to reflect around the
quantum state |π⟩, i.e., implement the map

|ψ⟩ = α |π⟩+ β |π⊥⟩ −→ (2 |π⟩ ⟨π| − I) |ψ⟩ = α |π⟩ − β |π⊥⟩ .

Assume that |ψ⟩ = α |π⟩ +
∑

j βj |vj⟩ such that W (P ) |π⟩ = |π⟩ and W (P ) |vj⟩ = ei2πθj |vj⟩ with
1/2 > |θj | > ∆ > 0. We call ∆ the spectral gap of the quantum walk. Argue that the following
circuit implements a reflection around |π⟩ (QPE represents quantum phase estimation with respect
to W (P ) to precision ∆/2).

How many calls does the circuit make to the quantum walk operator? Conclude that quantum walk
search finds a marked element using a number of quantum walk steps in

O

(
1√
δ

√
n

m

)
.
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