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In previous lectures we discussed the use of quantum algorithms for solving essentially “non-
quantum” problems such as factoring and optimization. However, the most natural (and maybe
most promising) application of quantum computers is the simulation of quantum systems and
quantum chemistry.

1 Ground state energy

A canonical problem in quantum chemistry is that of estimating the ground state energy of a
molecular or condensed matter Hamiltonian. In full generality, this problem is QMA-hard (see next
lectures by A. Grilo), and so we do not expect to solve this efficiently even on a quantum computer.
However, there is hope that more “natural” Hamiltonians do allow for efficient quantum algorithms,
while still being hard for classical algorithms.

1.1 Quantum phase estimation

There is a very natural quantum algorithm for estimating the ground state energy of an n-qubit
Hamiltonian H that is based on quantum phase estimation. It corresponds to the following circuit:

Some details:

1. C is an n-qubit circuit that prepares an “ansatz state” |Ψ0⟩. Ideally this corresponds to a
rough approximation of the ground state |ϕ0⟩ of H.

2. The algorithm then applies quantum phase estimation on |Ψ0⟩ with operator U = eiH and
precision 2−m = 1/M .

3. Finally, the phase estimation register is measured. The measurement result yields an estimate
of the ground state energy.

Assume H has eigenvalue decomposition H =
∑2n−1

i=0 λi |ϕi⟩, with eigenvalues λ0 ≤ · · · ≤ λ2n−1,
and the ansatz has decomposition |Ψ0⟩ =

∑
i αi |ϕi⟩. We can track the evolution in the circuit:

|0m⟩ |0n⟩
C

−−−−→ |0m⟩ |Ψ0⟩ =
∑
i

αi |0m⟩ |ϕi⟩

QPEM

−−−−→
∑
i

αi |λ̃i⟩ |ϕi⟩

meas.
−−−−→ |λ̃i⟩ |ϕi⟩ with probability pi = |αi|2.

Here λ̃i is an estimate such that |λ̃i − λi| ≤ 1/M .
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The complexity of the circuit is dominated by (i) the complexity of preparing the ansatz (i.e.,
implementing C), and (ii) the complexity of doing Hamiltonian simulation with Hamiltonian H for
time O(M).

Correctness of the algorithm hinges on the overlap |α0|2 = | ⟨Ψ0|ϕ0⟩ |2 of our ansatz state |Ψ0⟩
with the actual ground state |ϕ0⟩. The probability of actually outputting an estimate of the ground
state energy is |α0|2. If this is sufficiently large (e.g., |α0|2 constant), then after a constant number
of iterations, the algorithm will output a correct estimate of the ground state energy. On the other
hand, if we have no clue about the ground state |ϕ0⟩, then we could pick as ansatz a uniformly
random initial state, but then the overlap would only be |α0|2 = 1/2n in expectation. The algorithm
then returns an estimate of a uniformly random energy level of the Hamiltonian, which is typically
useless.

Common ansatzes are based on the quantum adiabatic algorithm, classical approximations such
as Hartree-Fock, or variational quantum circuits, as we discuss next.

1.2 VQE

Apart from needing a good ansatz, the phase estimation algorithm also requires that we can effi-
ciently simulate the problem Hamiltonian H (i.e., implement eiHt). While this would typically be
feasible on a full-fledged quantum computer (see last lecture), there is currently interest in using
“near-term” quantum computing devices for which Hamiltonian simulation might be too hard. The
“Variational Quantum Eigensolver” (VQE) is a variational quantum algorithm that tries to address
both the ansatz and the Hamiltonian simulation problem.

VQE is similar to QAOA, but it is designed to minimize the energy of a general Hamiltonian
(rather than a diagonal cost Hamiltonian). I.e., it aims to solve

min
⟨ψ|ψ⟩=1

⟨ψ|H|ψ⟩ . (1)

By the variational principle of quantum mechanics, the minimum equals the ground state energy
λ0 of H, and it is achieved when |ψ⟩ is a ground state of H. Similar to QAOA, VQE uses a
parameterized circuit to generate |ψ⟩. The parameters of the circuit are tuned so as to minimize
the energy (1).

For QAOA, the Hamiltonian H was diagonal, and so we could easily evaluate the energy of
the output state by measuring all qubits and evaluating the cost function h(z) for the resulting
bit string z. VQE considers general Hamiltonians, and so evaluating (1) requires more work.
One approach is to use quantum phase estimation, as in the previous section, but this requires
simulating the Hamiltonian evolution eiHt and this can be expensive. Instead, the Hamiltonian H
is decomposed as a linear combination of Pauli operators,

H =

3∑
i1,...,in=0

αi1...in σi1 ⊗ σi2 ⊗ · · · ⊗ σin .

We can then rewrite the energy as

⟨ψ|H|ψ⟩ =
3∑

i1,...,in=0

αi1...in ⟨ψ|σi1 ⊗ σi2 ⊗ · · · ⊗ σin |ψ⟩ ,

and so it suffices to estimate the energy of |ψ⟩ with respect to each of the individual Pauli terms.
This can be done relatively straightforwardly (see exercises). While there can be 4n such terms, the
sum can often be truncated to poly(n) terms. E.g., assuming 2-body interactions limits the sum to
O(n2) Pauli terms.1

1The Max Cut Hamiltonian from last lecture is an example of this.
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