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1 Grover’s algorithm

The “unstructured search” problem is defined as follows: given query access to a boolean input
string {x0, . . . , xN−1} ∈ {0, 1}N , return a “marked” element (i.e., an index i such that xi = 1), or
decide that no marked element exists. How many queries does this take? Any classical algorithm
trivially requires Ω(N) queries. On the other hand, Grover’s quantum search algorithm solves this
problem with O(

√
N) queries. In contrast to the exponential speedup in quantum period finding

and Shor’s algorithm, this “only” gives a quadratic speedup, but it has much wider applicability.
Assume N = 2n. The following n-qubit circuit describes a single iteration G of Grover’s algo-

rithm:

Here Ox,± is the “phase oracle” defined by

Ox,± |i⟩ = (−1)xi |i⟩ ,

and R0 is the reflection around |0n⟩ (i.e., R0 |0n⟩ = |0n⟩ and R0 |i⟩ = − |i⟩ if i ̸= 0). We will prove
the following proposition.

Proposition 1. Consider input {x0, . . . , xN−1} ∈ {0, 1}N and let t = |x| denote the number of
nonzero entries. There exists k ∈ O(

√
N/t) so that applying k iterations of the Grover operator to

the initial state 1√
N

∑N−1
i=0 |i⟩, and measuring the state (see circuit below), returns a marked element

with constant probability.

There is a nice geometric picture that proves this proposition. For this, we reinterpret the full
Grover iteration as a product of two reflections. First, we can think about HNR0HN as a reflection
around the uniform superposition

|u⟩ = HN |0⟩ = 1√
N

N−1∑
i=0

|i⟩ .

Indeed, verify that HNR0HN |u⟩ = |u⟩ while HNR0HN |v⟩ = − |v⟩ for any |v⟩ orthogonal to |u⟩.
Second, we interpret Ox,± as a reflection around the “unmarked” superposition

|u0⟩ =
1√
N − t

∑
i:xi=0

|i⟩ .
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If we also use the notation |u1⟩ = 1√
t

∑
i:xi=1 |i⟩ for the “marked” superposition, then we can

rewrite the initial state as
|u⟩ = sin(θ) |u1⟩+ cos(θ) |u0⟩ ,

with sin(θ) =
√
t/N . This corresponds to the left picture in Fig. 1. A Grover iteration first applies

Ox,±, i.e., a reflection around the unmarked state |u0⟩. This leads to the middle picture. Then it
applies HNR0HN , which is a reflection around the initial state |u⟩. This leads to the right picture,
which depicts the state after a single Grover iteration:

G |u⟩ = G(sin(θ) |u1⟩+ cos(θ) |u0⟩) = sin(3θ) |u1⟩+ cos(3θ) |u0⟩ .

Figure 1: Depiction of one Grover iteration.

After k Grover iterations, we get a state

Gk |u⟩ = sin((1 + 2k)θ) |u1⟩+ cos((1 + 2k)θ) |u0⟩ .

Ideally, setting k to be k∗ = π/(4θ)− 1/2 would yield Gk |u⟩ = |u1⟩. Measuring this state returns a
(uniformly random) marked element with certainty. However, k has to be an integer and so we set
it to be the nearest integer to k∗. Assuming θ ≤ 1/2, we can bound the success probability by

sin2((2k + 1)θ) = sin2(π/2 + 2(k − k∗)θ) = cos2(2(k − k∗)θ) ≥ cos2(θ) ≥ 1− θ2 ≥ 3/4,

where we used that |k − k∗| ≤ 1/2. The total complexity of the resulting algorithm is O(k), which
is O(1/θ) = O(

√
N/t).

2 Quantum query complexity

We can think about Grover’s algorithm as computing the OR-function on the N -bit input string x.
The algorithm makes O(

√
N) quantum queries to the input, while any classical algorithm must make

Ω(N) queries. Can we further improve on Grover’s algorithm? Can we compute the OR-function
with a single quantum query, as in the Deutsch-Jozsa algorithm? Quantum query complexity is the
study of precisely these questions. For a general input x = x0 . . . xN−1 ∈ {0, 1}N and a boolean
function f : {0, 1}N → {0, 1}, we ask how many quantum queries an algorithm has to make to
compute f . While quantum algorithms give upper bounds on the quantum query complexity, in
this section we discuss lower bounds.

We consider quantum query access to the input through the unitary operation1

1This corresponds to the bit oracle. We could equivalently consider the phase oracle (see previous exercise session).
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|i, b⟩ 7→ Ox |i, b⟩ = |i, b⊕ xi⟩ ,

for i ∈ {0, 1, . . . , N − 1}, b ∈ {0, 1} and ⊕ addition mod 2. Now consider a general quantum
algorithm for computing f(x) of the input x. Apart from the |i, b⟩ query-answer registers, the
algorithm also has some workspace register |w⟩ (to do calculations etc). If the algorithm makes T
queries to the input, then we can describe it by a circuit of the following form:

We assume that the output of the algorithm corresponds to a measurement of the first qubit. Let p
denote the probability of returning “1”. For a fixed choice of unitaries U0, . . . , UT , we can interpret
p = p(x) as a function of (only) x. The algorithm correctly computes f if p(x) = f(x). The
algorithm computes f with probability at least 2/3 if |p(x) − f(x)| ≤ 1/3 (and so p(x) ≥ 2/3 if
f(x) = 1 and p(x) ≤ 1/3 if f(x) = 0).

As it turns out, the number of queries T puts strong constraints on the polynomial p. First of
all, recall the notion of a multilinear polynomial q : {0, 1}N → C, which is a function of the form

q(x) =
∑

S⊆{0,...,N−1}

cS
∏
i∈S

xi, cS ∈ C.

The degree of q is deg(q) = max{|S| | cS ̸= 0}. In the exercises we will prove that any function
f : {0, 1}N → C has a unique representation as such a multilinear polynomial (of degree at most N).
The following claim, which we prove later, shows that the polynomial p is even further constrained.

Claim 1. The output probability p : {0, 1}N → [0, 1] of a quantum circuit making T queries is a
multilinear polynomial of degree at most 2T .

As a consequence, if f is a polynomial of degree d, then any quantum query algorithm for which
p(x) = f(x) must make T ≥ d/2 queries.

Exercise 1. Write the OR-function for N = 3 bits as a multilinear polynomial. Conclude that
there is no 1-query quantum algorithm to compute the OR-function on 3 bits.

More generally, it can be shown that the OR-function on N bits has degree N , and so any quantum
algorithm that computes OR with success probability 1 must make at least N/2 queries.

If we only need to be correct with probability at least 2/3, then it suffices that |p(x)−f(x)| ≤ 1/3.

The approximate degree d̃eg(f) of f is the lowest degree of a polynomial that approximates f in such
a way. It follows that any quantum algorithm that computes f with probability at least 2/3 must

make T ≥ d̃eg(f)/2 quantum queries. Turning to the OR function, it is nontrivial but elementary to

show that d̃eg(OR) ∈ Ω(
√
N) (see e.g. lecture notes Childs). This implies an Ω(

√
N) lower bound

on the bounded error quantum query complexity of the OR function, and this proves that Grover’s
algorithm is optimal.
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2.1 Proof of Claim 1

Let |ψT ⟩ denote the output state of the T -query algorithm (before measurement). We expand it as

|ψt⟩ =
∑

z=(w,i,b)

αz |z⟩ =
∑

z=(w,i,b)

αz(x) |z⟩ ,

where we observed that the amplitudes αz(x) ∈ C are functions of the input x. The output is
obtained from measuring the first qubit of the final state |ψT ⟩. If z1 denotes the first bit of z, then
the probability of outputting “1” is ∑

z:z1=1

|αz(x)|2 = p(x).

We will prove that the functions αz(x) are multilinear polynomials of degree at most T . Claim 1
directly follows from that.

The proof is by induction. If T = 0 then the claim is trivially satisfied, as the state |ψ0⟩ does not
depend on x. Now, assuming that the claim holds for |ψT ⟩, let us prove it for |ψT+1⟩ = UT+1Ox |ψT ⟩.
For a basis state |z⟩ = |w, i, b⟩, we rewrite the oracle action

Ox |w, i, b⟩ = |w, i, b⊕ xi⟩ = xi |w, i, b⊕ 1⟩+ (1− xi) |w, i, b⟩ .

Applying this to |ψT ⟩ yields

Ox |ψT ⟩ =
∑

z=(w,i,b)

αz(x)Ox |w, i, b⟩ =
∑

z=(w,i,b)

αz(x)
(
xi |w, i, b⊕ 1⟩+ (1− xi) |w, i, b⟩

)
.

This shows that the new amplitudes are linear combinations of terms of the form αz(x)xi or αz(x)(1−
xi). Hence, the gate Ox only increase the degree of the αz’s by 1.

Then, note that applying the unitary UT+1 to Ox |ψT ⟩ only forms linear combinations of the
amplitudes. This cannot further increase the degree of the coefficients, and hence we proved that
the amplitudes αz(x) of |ψT+1⟩ have degree at most T + 1.
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