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1 Quantum Fourier transform

One of the key building blocks used in quantum algorithms is the quantum Fourier transform.
First, we recall the classical (discrete) Fourier transform. For N ∈ N, let ωN = e2πi/N . The
Fourier transform FN : CN 7→ CN is defined by

FN =
1√
N


1 1 . . . 1

1 ωN . . . ωN−1
N

...
...

. . .
...

1 ωN−1
N . . . ω

(N−1)(N−1)
N

 .
More concisely, (FN )j,k = ωjk

N /
√
N for j, k ∈ {0, . . . , N − 1}. The rows or columns of FN are

the Fourier modes

|k̃⟩ = 1√
N

N−1∑
j=0

ωjk
N |j⟩ , k ∈ {0, . . . , N − 1}. (1)

Since these form an orthonormal basis, the Fourier transform FN is a unitary operation.
It follows that we can think of the Fourier transform as a quantum operation. Assuming

that N = 2n, the operation FN acts on an n qubit state:

If |ψ⟩ =
∑N−1

k=0 αk |k⟩ then this returns the state

FN |ψ⟩ =
N−1∑
j=0

(
1√
N

N−1∑
k=0

ωjk
N αk

)
|j⟩ .

As we will see later, this is an incredibly useful quantum operation. Moreover, while the classical
Fourier transform takes time poly(N), we can implement the quantum Fourier transform in time
only poly(n)!

Lemma 1. Let N = 2n. We can implement the quantum Fourier transform FN with O(n2)
2-qubit gates.

2 Quantum phase estimation

A first important application of the quantum Fourier transform is quantum phase estimation.
Assume access to a unitary U and eigenvector |ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩ for some θ ∈ [0, 1).
We can use the QFT to estimate the phase θ. The intuition behind this is that repeatedly
applying U to |ψ⟩ yields a “signal” eiθt |ψ⟩ that rotates with angular velocity θ.

For some N = 2n, we assume that θ is such that Nθ is an integer. Consider the controlled
version of U , represented by the following circuit:
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where k ∈ {0, 1, . . . , N − 1}. The circuit for quantum phase estimation is the following:

We can track the evolution:

|0n⟩ |ψ⟩ FN7→ 1√
N

N−1∑
j=0

|j⟩ |ψ⟩

cU7→ 1√
N

N−1∑
j=0

|j⟩U j |ψ⟩ =

 1√
N

N−1∑
j=0

e2πiθj |j⟩

 |ψ⟩ .

Rewriting e2πiθj = ω
(Nθ)j
N , we see that the first register now corresponds to a simple Fourier

mode |k̃⟩ with k = Nθ (see Eq. (1)). Applying the inverse Fourier transform yields the final
state  1√

N

N−1∑
j=0

ω
2πi(θN)j
N |j⟩

 |ψ⟩
F †
N7→ |Nθ⟩ |ψ⟩ ,

from which we can read off the phase θ.
The complexity of phase estimation is typically dominated by the maximum number of times

we have to implement the unitary U , which is N − 1 times. If the phase θ ∈ [0, 1) does not have
an exact n-bit expansion, then quantum phase estimation returns with high probability an n-bit
approximation to θ. In particular, we have the following lemma.

Lemma 2. Consider a unitary U and eigenvector |ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩ with θ ∈ [0, 1).
Using quantum phase estimation, it is possible to obtain an additive ϵ-approximation to θ by
making O(1/ϵ) calls to U .

3 Shor’s algorithm

We now move on to one of the crown jewels of quantum computing, which is Shor’s quantum
algorithm for factoring integers. Consider an n-bit integer N such that 2n−1 ≤ N < 2n.
Classically it is possible to check whether N is prime in time poly(n). However, if we wish
to actually find a nontrivial factor of N , then the best classical algorithm takes time exponential
in some power of n. Shor’s algorithm is a quantum algorithm that factorizes a composite number
in time poly(n) on a quantum computer.

An important yet non-quantum component of Shor’s algorithm is a reduction from factoring
to the following problem:

Given access to a function f : N → {0, . . . , N − 1} for which there exists r ∈
{0, . . . , N − 1} such that f(a) = f(b) iff a = b (mod r), find r.

In the following we describe a relatively simple quantum algorithm that solves this problem in
time poly(n).
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3.1 Quantum algorithm for period finding

Let q = 2ℓ be such that N2 < q ≤ 2N2, and define the oracle Of |a⟩ |0⟩ = |a⟩ |f(a)⟩ for
a ∈ {0, 1, . . . , q − 1} to access f . The gist of the algorithm is described by the following simple
circuit:

We can again track the evolution:

|0⟩ |0⟩ Fq7→ 1
√
q

q−1∑
a=0

|a⟩ |0⟩

Of7→ 1
√
q

q−1∑
a=0

|a⟩ |f(a)⟩

Now, for simplicity, assume that r divides q (i.e., m = q/r is integer). Then, by the periodicity
assumption on f , we can rewrite this as

1
√
q

q−1∑
a=0

|a⟩ |f(a)⟩ = 1√
r

r−1∑
s=0

 1√
m

m−1∑
j=0

|s+ jr⟩

 |f(s)⟩ .

Now notice that the first register contains a superposition of r-periodic “signals” of the form
1√
m

∑m−1
j=0 |s+ jr⟩. By standard Fourier analysis (see exercises), we see that

1√
m

m−1∑
j=0

|s+ jr⟩
F †
q7→ 1√

r

r−1∑
ℓ=0

ω−sℓm
q |ℓm⟩ ,

We can hence summarize the full circuit by the mapping

|0⟩ |0⟩
F †
qOfFq7→ 1√

r

r−1∑
s=0

(
1√
r

r−1∑
ℓ=0

ω−sℓm
q |ℓm⟩

)
|f(s)⟩ .

If we measure the first register of this state, we retrieve an integer b = cm for uniformly
random c ∈ {0, 1, . . . , r − 1}. Now recall that m = q/r and so b/q = c/r, where we know both
b and q. If c is coprime to r (which happens with good probability), then c and r are obtained
by reducing b/q to lowest terms.

The overall complexity of the algorithm is poly(n). If we omit our simplifying assumption
(r divides q) then the integer b will only be approximately equal to cm, yet we can still recover
r from the so-called “continued-fraction expansion” of b.
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