AQAlg: Advanced Quantum Algorithms

2024 - 2025

Exercises 3: Adiabatic quantum computation

Lecturer: Simon Apers (apers@irif.fr)

Exercise 1 (Pauli basis). Recall the unitary Pauli matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

- Show that the Pauli basis $\{I, X, Y, Z\}$ forms a basis for the complex 2-by-2 matrices. I.e., any $A \in \mathbb{C}^{2 \times 2}$ can be expanded as $A = \alpha_1 I + \alpha_x X + \alpha_y Y + \alpha_z Z$.
- Argue that this implies that the *n*-qubit Pauli basis $\{I, X, Y, Z\}^{\otimes n}$ forms a basis for the 2^n -by- 2^n matrices.
- Show that if $A \in \mathbb{C}^{2^n \times 2^n}$ is Hermitian, then its coefficients in the Pauli basis are real.

Exercise 2 (Max cut). Finding the maximum cut in a graph is a canonical problem in combinatorial optimization. For a graph G with vertex set [n] and (symmetric) edge set $E \subseteq [n]^2$, a maximum cut is described by a subset $Z \subset [n]$ that cuts a maximum number of edges (edges crossing from Z to Z^c). Equivalently, it maximizes the cut function

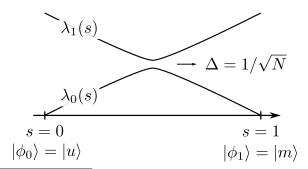
$$c(A) = \sum_{(i,j)\in E} I_{i\in A, j\notin A}.$$

- Identify a subset A with the indicator $a \in \{0,1\}^n$ $(i \in A \Leftrightarrow a_i = 1)$. Express the cut function c(A) as a degree-2 polynomial h in a.
- Rewrite the cost Hamiltonian $H_1 = -\sum_{z \in \{0,1\}^n} c(z) |z\rangle \langle z|$ in terms of identity and Pauli-Z matrices.

Exercise 3 (Adiabatic Grover algorithm (optional)). Consider the unstructured search problem over the set $[N] = \{0, 1\}^n$, and assume that there is a single (unknown) marked element $m \in \{0, 1\}^n$. We can solve this problem using the adiabatic optimization algorithm with cost function h(z) = 0 if z = m and h(z) = 1 otherwise. Letting $|u\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle$, we can use the Hamiltonians

$$H_0 = I - |u\rangle \langle u|$$
 and $H_1 = I - |m\rangle \langle m|$.

with ground states $|\phi_0\rangle = |u\rangle$ and $|\phi_1\rangle = |m\rangle$, respectively. Similar to Grover, the Hamiltonian $H(s) = (1-s)H_0 + sH_1$ only acts nontrivially in the subspace spanned by $|u_0\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq m} |x\rangle$ and $|m\rangle$. Calculate the nontrivial eigenvalues of H(s), and show that they behave as in the following figure.¹



¹While this proves that the gap is inverse polynomial, and so the adiabatic algorithm solves unstructured search in poly(n), it doesn't directly recover the quadratic Grover speedup. A more refined adiabatic algorithm does [RC02].

References

[RC02] Jérémie Roland and Nicolas J Cerf. Quantum search by local adiabatic evolution. *Physical Review A*, 65(4):042308, 2002.