$$
\begin{aligned}
& \text { Ex. } 1 \text { (QFT) } \\
& -F_{2} \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \equiv-H- \\
& -F_{4}-\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & -i & -1 \\
i
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& |a\rangle|b\rangle \rightarrow \frac{|0\rangle+(-1)^{a}|a\rangle}{\sqrt{2}}|b\rangle \\
& \rightarrow \frac{|0\rangle+(-1)^{a} \cdot b|1\rangle}{\sqrt{2}}|b\rangle \\
& \rightarrow \frac{|0\rangle+(-1)^{a} \cdot b|1\rangle}{\sqrt{2}} \cdot \frac{|0\rangle+(-1)^{b}|1\rangle}{\sqrt{2}} \\
& \rightarrow \frac{|0\rangle+(-1)^{b}|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle+(-1)^{a} i b|1\rangle}{\sqrt{2}} \\
& =\frac{1}{2}\left(|00\rangle+(-1)^{a} i^{b}|01\rangle+(-1)^{b}|10\rangle+(-1)^{a+b} i^{b}|11\rangle\right)=F_{4}|a||b\rangle
\end{aligned}
$$

Ex. 2: orades

$$
\begin{aligned}
|z\rangle|w\rangle & \xrightarrow{H}|z\rangle \frac{|0\rangle+(-1)^{v}|1\rangle}{\sqrt{2}}=(-1)^{2 / \theta(z)} \\
& \xrightarrow{0} \frac{|z\rangle|0\rangle+(-1)^{\sqrt{v}+f(z)}|z\rangle|1\rangle}{\sqrt{2}} \\
& \xrightarrow{H}|z\rangle|w e f(z)\rangle=O_{b}|z\rangle|w\rangle
\end{aligned}
$$

$$
\begin{aligned}
|z\rangle|1\rangle & \xrightarrow{H}|2\rangle \frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& \xrightarrow{O_{b}}|x\rangle \frac{|f(x)\rangle-\left|n_{0} f(x\rangle\right\rangle}{\sqrt{2}}=(-1)^{f(x)}|x\rangle \frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& \xrightarrow{H}(-1)^{f(x)}|x\rangle|1\rangle=\left(O_{p}|x\rangle\right)|1\rangle
\end{aligned}
$$

Ex.3: phase estimation

$$
U,|\phi\rangle \text { s.t. } V|\phi\rangle=e^{2 \pi i \theta}|\phi\rangle \text { for } \phi \in(0,1)
$$

assume $N \theta \in \mathbb{N}$ for $N=2^{n}$.

$$
\begin{aligned}
& |0\rangle|\phi\rangle \stackrel{E}{\rightarrow} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1}|k\rangle|\phi\rangle \\
& \xrightarrow{v} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1}|k\rangle v^{k}|\phi\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2 \pi i \theta k}|k\rangle|\phi\rangle=\left(\left.\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2 \pi}{\pi} \cdot k(k(\theta)} \right\rvert\, k\right)|\phi\rangle \\
& \xrightarrow{F_{N}^{+}}|\theta N\rangle|\phi\rangle
\end{aligned}
$$

Learn θ

Ex.4: amplitude estimation

$$
U\left|0^{n}\right\rangle|0\rangle=|\psi\rangle=\sqrt{p}\left|\psi_{i}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{0}\right\rangle(0\rangle
$$

"marked state"

$\left|\psi_{1}\right\rangle|1\rangle$ w. prob. P $\left|\psi_{0}\right\rangle|0\rangle$ w. prob. 1-p

$$
\text { 10) } 0^{n}-\underbrace{A}_{\sin (\theta)} \cdot \cdots \cdot A
$$

$$
\left|0^{n}\right\rangle|0\rangle \rightarrow \sqrt{p}\left|\psi_{1,1}\right\rangle+\sqrt{1-p}\left|\psi_{0}, 0\right\rangle
$$

$\xrightarrow{R_{t}}$.
$\left.\left.\xrightarrow{R_{t}}-\sqrt{p} \mid \psi_{1,1}\right)+\sqrt{1-p} \mid \psi_{0,0}\right)$

$$
\xrightarrow{R_{4}} \sin (3 \theta)\left(\psi_{1}, 1\right)+\cos (3 \theta)\left(\psi_{0}, 0\right)
$$

$$
-A] \equiv \sqrt{R_{*}}\left[R_{4}\right]
$$

$$
\left.\xrightarrow[\rightarrow]{A} \sin \left((1+2 k \mid \theta) \mid \psi_{1}, 1\right)+\cos ((1+2 k) \theta) \mid \psi_{0}, 0\right)
$$

$\left.\xrightarrow{\boldsymbol{x}} \mid \psi_{1,1}\right)$ w. prob. $\sin ((1+2 k) \theta)^{2}$

Ex. 5: approximate counting
Check that $\left.\left\langle\mid \psi_{ \pm}\right\rangle=\frac{\left|\psi_{1}\right\rangle \pm i\left|\psi_{0}\right\rangle}{\sqrt{2}}, \lambda_{t}=e^{ \pm 2 i \theta}\right\rangle$
are eigenpars of A.
with θ st. $\sin (\theta)$

$$
\begin{aligned}
G \text { use that } A\left|\psi_{1}\right\rangle & =\cos \left(2 \theta| | \psi_{1}\right\rangle-\sin (2 \theta)\left|\psi_{0}\right\rangle \\
A\left|\psi_{0}\right\rangle & =\sin (2 \theta)\left|\psi_{1}\right\rangle+\cos (2 \theta)\left|\psi_{0}\right\rangle .
\end{aligned}
$$

Use QPE or $|\psi\rangle=-\frac{i}{\sqrt{2}}\left(e^{i \theta}\left|\psi_{+}\right\rangle-e^{-i \theta}\left|\psi_{-}\right\rangle\right)$
to estimate p.

$$
\begin{aligned}
L|\psi\rangle|0\rangle & \xrightarrow{Q P E} \\
& \xrightarrow{\underset{\sim}{x}} \frac{-i}{\sqrt{2}}\left(e^{i \theta}\left|\psi_{+}\right\rangle \mid N \theta .\right.
\end{aligned}
$$

