Quantum algorithms 3: OPTIMIZATION

Simon Apers
 (CNRS \& IRIF, Paris)

McKinsey, Paris, May '23
(simonapers.github.io/mckinsey.html)

TUTORIAL 1: BASICS (21/4)

quantum circuits
quantum Fourier transform
Grover search
TUTORIAL 2: CHEMISTRY (28/4)
quantum problems
quantum simulation
variational quantum algorithms
TUTORIAL 3: OPTIMIZATION (26/5)
optimization problems
adiabatic algorithm
theory outlook

Optimization problems

ADIABATIC ALGORITHM
THEORY OUTLOOK

Optimization problems

$$
\min _{x \in K} f(x)
$$

ubiquitous in computer science, engineering, operations research, economics, ...

Example 1: traveling salesperson

"discrete" optimization problem
solution: tour $[A, D, C, B, E]$
other discrete optimization problems:

packing

chip design

clustering
common heuristics:
exhaustive search - greedy algorithms - local search simulated annealing - evolutionary/genetic algorithms

Example 2: neural network training

"continuous" optimization problem solution: weight vector $w=[0.129,0.948,0.474, \ldots]$

other continuous optimization problems:

common algorithms:
gradient descent - interior point methods Newton's method - local search (Nelder-Mead)

Optimization problems: $\min _{x} f(x)$ (formalized)

discrete setting:

$$
x \in\{0,1\}^{n}
$$

efficient algorithm: polynomial runtime $\sim \operatorname{poly}(n)$
however, exhaustive search: exponential runtime $\sim 2^{n}$

MINIMUM CUT:

given graph $G=(V, E)$, find subset $S \subset V$ that minimizes cut

$$
\left|E\left(S, S^{c}\right)\right|=\left|\left\{(i, j) \in E \mid i \in S, j \in S^{c}\right\}\right|
$$

equivalently: find $x \in\{0,1\}^{n}$ that minimizes

$$
f(x)=\sum_{(i, j) \in E} x_{i}\left(1-x_{j}\right)
$$

MINIMUM CUT:

60's: can be solved in time poly (n) ! (e.g., Ford-Fulkerson)
in class \mathbf{P}
= (decision) problems that can be solved
by a classical computer in polynomial time

MAXIMUM CUT:

given graph $G=(V, E)$, find subset $S \subset V$ that maximizes cut

$$
\left|E\left(S, S^{c}\right)\right|=\left|\left\{(i, j) \in E \mid i \in S, j \in S^{c}\right\}\right|
$$

equivalently: find $x \in\{0,1\}^{n}$ that minimizes

$$
f(x)=-\sum_{(i, j) \in E} x_{i}\left(1-x_{j}\right)
$$

MAXIMUM CUT:

> 70's: NP-complete!
> (even to approximate within factor $16 / 17$)

class NP

$=$ (decision) problems that can be verified by a classical computer in polynomial time

problem is NP-complete
if all problems in NP can be "reduced" to it

\mathbf{P} (efficiently solvable)

I \cap
 NP (efficiently verifiable)

$$
? \mathrm{P}=\mathrm{NP} ?
$$

find efficient algorithm for max cut (or TSP or ...), or prove none exists millennium prize problem $=\$ 1 \mathrm{M}$

common belief: $\mathbf{P} \neq \mathbf{N P}$

however, in practice we can solve hard problems!
(TSPs are solved, NNs are trained)
average cases are easier? reductions are "unnatural"?
two faces of optimization:
complex, theoretical algorithms solve worst case problems
\leftrightarrow simple, practical heuristics solve common instances
see e.g. the "unreasonable effectiveness" of gradient descent in training NNs

Quantum algorithms for optimization

advantage less "native" than in chemistry
solution $x \in\{0,1\}^{n}$ described with n bits
distinguish:
near term (non-universal, noisy)
\leftrightarrow long term (universal, error-corrected)
analog (e.g., adiabatic, annealing)
\leftrightarrow digital (gate-based)

Quantum algorithms for optimization: complexity classes

$$
\begin{aligned}
& \text { class BQP } \\
& =\text { (decision) problems that can be solved } \\
& \text { by a quantum computer in polynomial time }
\end{aligned}
$$

quantum computers generalize classical computers
$\rightarrow \mathbf{P} \subseteq \mathbf{B Q P}$
common belief:

! quantum computers not expected to solve NP-complete problems (such as TSP or training NNs)

Quantum algorithms for optimization: theory vs practice?

theory:
provable polynomial speedups, but no "killer applications" with exponential speedups so far practice:
similar to classical heuristics, quantum heuristics for hard problems might work well in practice
heuristics better fitted to near-term devices, first demonstrations but not convincing yet

base case: Grover's algorithm

quadratic speedup over exhaustive search

e.g., n-variable SAT formula

$$
f(x)=\left(x_{1} \vee \bar{x}_{4}\right) \wedge x_{3} \wedge\left(\bar{x}_{3} \vee x_{1} \vee x_{7} \vee \bar{x}_{5}\right)
$$

$? \exists \mathrm{x}$ such that $f(x)=1$?
= NP-complete problem
exhaustive search: time 2^{n}
Grover search: time $2^{n / 2}$
for general SAT:
2^{n} classically and $2^{n / 2}$ quantumly conjectured optimal "(quantum) strong exponential time hypothesis"
for general NP problems:
often faster ($\ll 2^{n}$) classical algorithms
(e.g., branch-and-bound for vertex cover in $2^{0.35 n}$)
\rightarrow even quadratic quantum speedup not guaranteed

OPTIMIZATION PROBLEMS

 ADIABATIC ALGORITHMTheory outlook

optimization vs ground states

optimization problem

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

\rightarrow find ground state energy of Hamiltonian

$$
H=\sum_{z} f(z)|z\rangle\langle z|
$$

such that $H|x\rangle=f(x)|x\rangle$

optimization vs ground states: QUBO

quadratic unconstrained binary optimization (QUBO) problem:

$$
\min _{x \in\{0,1\}^{n}} f(x), \quad \text { with } \quad f(x)=\sum_{i, j} Q_{i j} x_{i} x_{j}
$$

maps to Ising Hamiltonian

$$
H=\sum_{z} f(z)|z\rangle\langle z|
$$

EX: use that

$$
Z_{i}|x\rangle=(-1)^{x_{i}}|x\rangle \quad \text { and } \quad Z_{i} Z_{j}|x\rangle=(-1)^{x_{i}+x_{j}}|x\rangle
$$

to express H in terms of I 's, Z_{i} 's and $Z_{i} Z_{j}$'s

key heuristic for ground state problems: adiabatic algorithm

\sim quantum analogue of simulated annealing

Adiabatic theorem

system Hamiltonian H, initial state $|\psi(0)\rangle$

evolves according to Schrödinger's equation

$$
\partial_{t}|\psi(t)\rangle=-i H|\psi(t)\rangle
$$

$$
\begin{gathered}
H \\
|\psi(t)\rangle
\end{gathered}
$$

\rightarrow eigenvectors do not change!
(up to global phase)

$$
\begin{gathered}
H|\psi(0)\rangle=\lambda|\psi(0)\rangle \text { then } \\
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle=e^{-i \lambda t}|\psi(0)\rangle
\end{gathered}
$$

what if Hamiltonian (i.e., system) changes?

$$
\begin{gathered}
\overparen{O} H(s) \\
|\psi(t)\rangle
\end{gathered}
$$

Adiabatic theorem: A physical system remains in its instantaneous groundstate if it changes slowly enough and if there is a gap between the groundstate and the rest of the Hamiltonian's spectrum.

parameterized Hamiltonian $H(s)$:
e.g., Ising Hamiltonian with external field strength s

$$
H(s)=-\sum_{\langle i, j\rangle} Z_{i} Z_{j}+s \sum_{i} X_{i}
$$

1. start from $\left|\phi_{0}\right\rangle$ (g.s. H_{0})
2. slowly change Hamiltonian from $H(0)$ to $H(1)$
(in time $T \gg \operatorname{poly}(1 / \Delta)$)
3. end in $\approx\left|\phi_{1}\right\rangle$ (g.s. $\left.H_{1}\right)$
(i.e., no "jumps"!)

Adiabatic quantum computation (AQC)

set up:

- initial Hamiltonian H_{0}, easy to prepare ground state $\left|\phi_{0}\right\rangle$
- final Hamiltonian H_{1}, "target state" $\left|\phi_{1}\right\rangle$ computation:
evolve $\left|\phi_{0}\right\rangle$ with parameterized Hamiltonian

$$
\begin{aligned}
& H(s)=(1-s) H_{0}+s H_{1} \\
& \text { for } s: 0 \rightarrow 1 \text { in time } T
\end{aligned}
$$

Adiabatic quantum computation (AQC)

= "analog" model of quantum computation, contrasts with "digital" gate-based model
if all Hamiltonians allowed:
universal model
(adiabatic \rightarrow gate: Hamiltonian simulation, gate \rightarrow adiabatic: "Feynman Hamiltonian")

if not: restricted model
(e.g., quantum annealers from D-Wave)

Adiabatic optimization algorithm

initial Hamiltonian $H_{0}=-\sum_{i} X_{i}$,
easy to prepare ground state $\left|\phi_{0}\right\rangle=|+\rangle^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle$
final Hamiltonian $H_{1}=\sum_{z} f(z)|z\rangle\langle z|$, "target state" $\left|\phi_{1}\right\rangle=\left|z_{0}\right\rangle$, with z_{0} minimizer f

parameterized Hamiltonian

$$
H(s)=s \sum_{z} f(z)|z\rangle\langle z|-(1-s) \sum_{i} X_{i}
$$

adiabatically "turns on" magnetic interactions

Toy example: Hamming weight

$$
f(z)=|z|
$$

quantum adiabatic algorithm finds z_{0} in poly (n) time classical greedy/annealing algorithm finds z_{0} in poly (n) time

Toy example: Hamming weight with a spike

$$
f(z)= \begin{cases}|z| & |z| \neq n / 4 \\ n & |z|=n / 4\end{cases}
$$

quantum adiabatic algorithm finds z_{0} in poly (n) time classical greedy/annealing algorithm needs $\exp (n)$ time
"quantum tunneling" from local minimum

Adiabatic optimization algorithm

? generic scaling Δ ? (recall, runtime $\sim \operatorname{poly}(1 / \Delta)$)
random instances of NP-complete problems, variants of Hamming weight with spike:

$$
\Delta \sim 1 / 2^{n}
$$

QAOA: quantum approximate optimization algorithm

inspired by circuit model implementation of time- T adiabatic algorithm:

$$
\partial_{t}|\psi(t)\rangle=-i H(t / T)|\psi(t)\rangle
$$

approximation 1: for $T \gg 1$ we get

$$
|\psi(t+1)\rangle \approx e^{-i H(t / T)}|\psi(t)\rangle
$$

and so

$$
|\psi(T)\rangle \approx e^{-i H(1)} e^{-i H(1-1 / T)} \ldots e^{-i H(1 / T)} e^{-i H(0)}|\psi(0)\rangle
$$

approximation 2 :

by Lie-Trotter formula on $H(s)=(1-s) H_{0}+s H_{1}$, for $r \gg 1$:

$$
e^{-i H(s)} \approx\left(e^{-i(1-s) H_{0} / r} e^{-i s H_{1} / r}\right)^{r}
$$

combined:

$$
\begin{aligned}
& |\psi(T)\rangle \approx e^{-i H_{1}} e^{-i H_{0} /(T r)} e^{-i H_{1}(1-1 / T) / r} \ldots e^{-i H_{0}(1-1 / T) / r} e^{-i H_{1} /(T r)} e^{-i H_{0}}|\psi(0)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\text { product of } e^{-i H_{1} \delta} \text { 's and } e^{-i H_{0} \delta} \text { 's }!
\end{aligned}
$$

Quantum approximate optimization algorithm (QAOA)
variational circuit based on mixer Hamiltonian

$$
e^{-i \phi H_{1}}=e^{-i \phi \sum_{i} X_{i}}
$$

and cost Hamiltonian

$e^{-i \theta H_{0}}=e^{-i \theta \sum f(z)|z\rangle\langle z|}$
\rightarrow depth- p QAOA circuit with parameters $\left\{\theta_{1}, \phi_{1}, \ldots, \theta_{p}, \phi_{p}\right\}:$
correctness adiabatic algorithm \Rightarrow correctness QAOA (for $p \rightarrow \infty$)

OPTIMIZATION PROBLEMS
ADIABATIC ALGORITHM THEORY OUTLOOK

Theory outlook: Grover

base case: quadratic speedup over exhaustive search
e.g., n-variable SAT formula in time $2^{n / 2}$
(versus time 2^{n} classically)
conjectured best possible for general SAT

Theory outlook: Grover

3-SAT (≤ 3 variables per clause)

$$
\left(x_{1} \vee \bar{x}_{4}\right) \wedge x_{3} \wedge\left(\bar{x}_{3} \vee x_{1} \vee x_{7}\right)
$$

solved by Schöning's algorithm in time $2^{0.415 n} \ll 2^{n / 2}$!
uses local search subroutine
\rightarrow local search + Grover $=$ time $\sqrt{2^{0.415 n}}=2^{0.207 n}$
similar situation for TSP (but more work and smaller speedup):

- exhaustive search: n^{n}
- dynamic programming: 2^{n}
- dynamic programming + Grover: $2^{0.79 n}$

Grover might not always give speedup!

e.g., unclear how to combine with other heuristics for fast SAT solving:

backtracking, branch-and-bound

simulated annealing

Theory outlook: quantum walks
= quantum version of random walks

RW on grid

RW vs QW on line
local exploration of state space / graphs, can give quadratically faster "hitting time"
polynomial quantum walk speedups for algorithms based on backtracking, branch-and-bound, simulated annealing

Theory outlook: HHL

linear equation:

$$
a x=b
$$

\rightarrow solution $x=b / a$
N-dimensional linear system:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
& \\
\end{array}\right][x]=[b]} \\
& \rightarrow \text { solution } x=A^{-1} b
\end{aligned}
$$

computing x is bottleneck in engineering, machine learning, economics, computer graphics, ...

Theory outlook: HHL

Harrow-Hassidim-Lloyd '08: quantum algorithm for linear system solving, returns quantum solution $|x\rangle=\sum_{i=1}^{N} x_{i}|i\rangle$

complexity: $\operatorname{poly}(\operatorname{cond}(A), \log n)$
vs. poly (n) of naïve classical algorithms

Theory outlook: HHL

(rough) idea:
interpret A as Hamiltonian, use Hamiltonian simulation $e^{-i A t}$ to map

$$
\begin{aligned}
|b\rangle & \rightarrow e^{-i A t}|b\rangle=\sum_{k=0}^{\infty} \frac{1}{k!}(-i A t)^{k}|b\rangle \\
& \rightarrow \ldots \\
& \rightarrow \sum_{k=0}^{\infty}(I-A)^{k}|b\rangle=A^{-1}|b\rangle=|x\rangle
\end{aligned}
$$

caveats:

- output is quantum state
- QRAM issues
- dequantization

Theory outlook: other

from HHL and Hamiltonian simulation: quantum algorithms for LPs and SDPs, interior point methods, "quantum linear algebra" for machine learning

from quantum query complexity: quantum oracle speedups for gradient estimation, convex optimization

for more:
see quantumalgorithmzoo.org

Summary:

Optimization problems

quantum (probably) cannot solve NP-complete problems Grover: quadratic baseline

ADIABATIC ALGORITHM

main heuristic, quantum version of simulated annealing viable in near-term inspiration for QAOA

Theory outlook

exist provable quantum speedups often polynomial
many caveats, may be impractical

Figure references

traveling salesperson: https://annealing-cloud.com/en/knowledge/1.html
chip: https://www.wired.com/story/fit-billions-transistors-chip-let-ai-do/
clustering: https://www.geeksforgeeks.org/clustering-in-machine-learning/ neural network: https://tikz.net/neural_networks/ annealing 1: http://fri.oden.utexas.edu/fri/Labs_2019/lab5/part2.php adiabatic: https://medium.com/@quantum_wa/quantum-annealing-cdb129e96601
backtracking: https://www.javatpoint.com/backtracking-introduction branch-and-bound: https://artint.info/2e/html/ArtInt2e.Ch3.S8.SS1.html annealing 2: https://medium.com/analytics-vidhya/simulated-annealing-869e171e763c quantum walk: https://www.researchgate.net/publication/45898194_Discrete-Time_Quantum_Walk_-_Dynamics_and_Applications

