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Optimization problems

min f(x)

xekK

ubiquitous in computer science, engineering,
operations research, economics, ...



Example 1: traveling salesperson
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“discrete” optimization problem

solution: tour [A, D, C, B, E|



other discrete optimization problems:

packing chip design clustering

common heuristics:
exhaustive search — greedy algorithms — local search
simulated annealing — evolutionary/genetic algorithms



Example 2: neural network training

hidden layers

“continuous” optimization problem

solution: weight vector w = [0.129,0.948,0.474, . . .]



other continuous optimization problems:

ot I

portfolio optimization regression protein folding

common algorithms:
gradient descent — interior point methods
Newton’s method — local search (Nelder-Mead)



Optimization problems: min, f(x) (formalized)
discrete setting:
x € {0,1}"
efficient algorithm:
polynomial runtime ~ poly(n)

however, exhaustive search:
exponential runtime ~ 2"



MINIMUM CUT:

given graph G = (V, E), find subset § C V that minimizes cut
E(S, ) = {(i.j) eE|i€S,jeSY

equivalently: find x € {0, 1}" that minimizes

fo = x(l-x)

(iy)eE



MINIMUM CUT:

60’s: can be solved in time poly(n)!
(e.g., Ford-Fulkerson)

in class P
= (decision) problems that can be solved
by a classical computer in polynomial time
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MAXIMUM CUT:

given graph G = (V,E), find subset S C V that maximizes cut
E(S,$)| = [{(i.j) eEli€S,je S

equivalently: find x € {0, 1}" that minimizes

f) == x(l-x)
(i)€E .



MAXIMUM CUT:

70’s: NP-complete!
(even to approximate within factor 16/17)

class NP
= (decision) problems that can be verified
by a classical computer in polynomial time

problem is NP-complete
if all problems in NP can be “reduced” to it
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P (efficiently solvable)
N

NP (efficiently verifiable)
?P=NP?

find efficient algorithm for max cut (or TSP or . ..

or prove none exists

millennium prize problem = $1M
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common belief: P # NP

however, in practice we can solve hard problems!
(TSPs are solved, NNs are trained)

average cases are easier? reductions are “unnatural”?

two faces of optimization:
complex, theoretical algorithms solve worst case problems
+» simple, practical heuristics solve common instances

see e.g. the “unreasonable effectiveness”
of gradient descent in training NNs
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Quantum algorithms for optimization
advantage less “native” than in chemistry
solution x € {0, 1}" described with n bits
distinguish:

near term (non-universal, noisy)
+ long term (universal, error-corrected)

analog (e.g., adiabatic, annealing)
+» digital (gate-based)
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Quantum algorithms for optimization: complexity classes

class BQP
= (decision) problems that can be solved
by a quantum computer in polynomial time

quantum computers generalize classical computers
— P C BQP

common belief:

NP problems

NP complete

! quantum computers not expected to solve NP-complete problems
(such as TSP or training NNs)
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Quantum algorithms for optimization: theory vs practice?
theory:

provable polynomial speedups,
but no “killer applications” with exponential speedups so far

practice:

similar to classical heuristics,
quantum heuristics for hard problems might work well in practice

heuristics better fitted to near-term devices,
first demonstrations but not convincing yet
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base case: Grover’s algorithm
quadratic speedup over exhaustive search
e.g., n-variable SAT formula
fx)=(x1 VX4) Ax3 A (X3 VX Vg VXs)
? dxsuchthatf(x) =17
= NP-complete problem
exhaustive search: time 2"

Grover search: time 27/2
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for general SAT:
2" classically and 2"/2 quantumly conjectured optimal
“(quantum) strong exponential time hypothesis”

for general NP problems:
often faster (<« 2") classical algorithms
(e.g., branch-and-bound for vertex cover in 20-357)

— even quadratic quantum speedup not guaranteed
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optimization vs ground states
optimization problem

xg?({?}nf (x)

— find ground state energy of Hamiltonian

H=> f@ )

such that H |x) = f(x) |x)

value f(z)
energy (z|H|x)
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optimization vs ground states: QUBO

quadratic unconstrained binary optimization (QUBO) problem:

xe{0,1}"

min f(x), with  f(x) =) Qi
ij
maps to Ising Hamiltonian
H=> f(z)]2) (]

EX: use that
Zilx)=(-1)"%|x) and 77 lx) = (_1)xi+xj 1)

to express H in terms of I's, Z;'s and Z;Z's
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key heuristic for ground state problems:

~ quantum analogue of simulated annealing

Temperature
4

adiabatic algorithm

» Time
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Adiabatic theorem
system Hamiltonian H, initial state |¢(0))

evolves according to Schrddinger’s equation

O |4 (1)) = —iH [(1))

H
% ()

— eigenvectors do not change!
(up to global phase)

H|1b(0)) = Al1)(0)) then
(1)) = e ™ [(0)) = =™ [1(0))
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what if Hamiltonian (i.e., system) changes?

O H(s)
[(2))

Adiabatic theorem: A physical system remains in its instantaneous
groundstate if it changes slowly enough and if there is a gap between
the groundstate and the rest of the Hamiltonian’s spectrum.
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parameterized Hamiltonian H(s):
e.g., Ising Hamiltonian with external field strength s

H(S) = — Z(h/) Z,Z] + SZ[-X,‘

O HO | timer | O HO)

—_—

[%(0)) = o) [Y(T)) = |61)

1. start from |¢) (g.s. Ho)
2. slowly change Hamiltonian from H(0) to H(1)
(in time T >> poly(1/A))
3.endin = |¢;) (g-s. Hi)
(i.e., no “jumps”!)
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Adiabatic quantum computation (AQC)
set up:

e initial Hamiltonian Hy,
easy to prepare ground state |¢g)

o final Hamiltonian H,
“target state” |¢1)

computation:

evolve |¢o) with parameterized Hamiltonian
H(s) = (1 — s)Hp + sH,

fors:0— lintimeT
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Adiabatic quantum computation (AQC)

= “analog” model of quantum computation,
contrasts with “digital” gate-based model

if all Hamiltonians allowed:

universal model
(adiabatic — gate: Hamiltonian simulation,

gate — adiabatic: “Feynman Hamiltonian”)

if not:
restricted model
(e.g., quantum annealers from D-Wave)
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Adiabatic optimization algorithm

initial Hamiltonian Hy = — )", X;,
easy to prepare ground state |¢g) = |+)*" = \15 DR

final Hamiltonian Hy = }__f(2) |z) (z/,
“target state” |¢1) = |zo), with zo minimizer f

parameterized Hamiltonian
—st ) 12) (2] — 1—S)ZX1‘
i
adiabatically “turns on” magnetic interactions

/_\

\
®” /\ |20)

s=0 s—l
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Toy example: Hamming weight

f(@) =1

quantum adiabatic algorithm finds zj in poly(n) time
classical greedy/annealing algorithm finds z, in poly(n) time
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Toy example: Hamming weight with a spike

)l 2l #n/4
1) = {n |zl =n/4

F(lz))

n__

quantum adiabatic algorithm finds zj in poly(n) time
classical greedy/annealing algorithm needs exp(n) time

“quantum tunneling” from local minimum
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Adiabatic optimization algorithm
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s=0 s=1

? generic scaling A ?
(recall, runtime ~ poly(1/A))

random instances of NP-complete problems,
variants of Hamming weight with spike:

An~1/28
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QAOA: quantum approximate optimization algorithm

inspired by circuit model implementation
of time-T adiabatic algorithm:

O |1p(1)) = —iH(t/T) |4(1))

approximation 1:
for T > 1 we get

(e + 1)) & e HUT) (1))
and so

’¢(T)> ~ e—iH(l)e—iH(l—l/T) o e—iH(l/T)e—iH(O) W}(O))
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approximation 2:
by Lie-Trotter formula on H(s) = (1 — s)Hy + sH;, for r > 1:

e ) (e*i(lfs)Ho/refism /,>r

combined:

|’¢(T)> ~ e—iHl e—iHO/(Tr)e—iHl(l—l/T)/r o e—ng(l—l/T)/re—iHl/(Tr)e—iHO W}(O»

N | =i /) e—iHo/(Tr) | | o=iH | a2 |¢(T))

D) | emiti

= product of ¢e=119’s and ¢~ 0o’g |
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Quantum approximate optimization algorithm (QAOA)

variational circuit based on mixer Hamiltonian

oI _ =6, X;

and cost Hamiltonian

e~ 0Hy _ ,—i0 31 (2)]2)(z]

— depth-p QAOA circuit with parameters {6, ¢1,...,0,, ¢p}:

A4 H 4 H
s T B

o) = e—i01Ho | | p—id1Hi e—i0pHo| | p—idpHi

4 H b4 H

correctness adiabatic algorithm =- correctness QAOA (for p — o)
35
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Theory outlook: Grover
base case: quadratic speedup over exhaustive search

e.g., n-variable SAT formula in time 2"/2
(versus time 2" classically)

conjectured best possible for general SAT
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Theory outlook: Grover
3-SAT (< 3 variables per clause)
(x1 VX4) Ax3 A (X3 Vxp V)
solved by Schéning’s algorithm in time 20415 « 27/2]
uses local search subroutine
— local search + Grover = time /204157 = 20207n

similar situation for TSP (but more work and smaller speedup):
— exhaustive search: n"
— dynamic programming: 2"
— dynamic programming + Grover: 2071
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Grover might not always give speedup!

e.g., unclear how to combine with other heuristics for fast SAT solving:

EQ‘ ﬁ
o dpd
RS

backtracking, branch-and-bound

Objective Function f(X)

Variable X

simulated annealing
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Theory outlook: quantum walks

= quantum version of random walks

0.09 — Quantum walk
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local exploration of state space / graphs,
can give quadratically faster “hitting time”

polynomial quantum walk speedups for algorithms based on
backtracking, branch-and-bound, simulated annealing
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Theory outlook: HHL
linear equation:
ax=>b
— solutionx = b/a

N-dimensional linear system:

— solutionx=A"1p

computing x is bottleneck in

engineering, machine learning, economics, computer graphics, . ..
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Theory outlook: HHL

Harrow-Hassidim-Lloyd '08:
qguantum algorithm for linear system solving,
returns quantum solution |x) = SN | x; |i)

1)

.|HHL(A)

complexity: poly(cond(A), logn)
vs. poly(n) of naive classical algorithms
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Theory outlook: HHL

(rough) idea:
interpret A as Hamiltonian,
use Hamiltonian simulation =’ to map

[e.o]

. 1
—IiAt
DEIRLEDY a (—iAr)*
k=0
— ...
=Y (I—A) b)) =A"" |b) = |x)

k=0

caveats:

— output is quantum state
— QRAM issues

— dequantization
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Theory outlook: other

from HHL and Hamiltonian simulation:
quantum algorithms for LPs and SDPs, interior point methods,
“‘quantum linear algebra” for machine learning

from quantum query complexity:
quantum oracle speedups for gradient estimation,
convex optimization

for more:
see quantumalgorithmzoo.org
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SUMMARY:
OPTIMIZATION PROBLEMS

quantum (probably) cannot solve NP-complete problems
Grover: quadratic baseline

ADIABATIC ALGORITHM

main heuristic, quantum version of simulated annealing
viable in near-term
inspiration for QAOA

THEORY OUTLOOK

exist provable quantum speedups
often polynomial
many caveats, may be impractical
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