QUANTUM ALGORITHMS 3: OPTIMIZATION

Simon Apers (CNRS & IRIF, Paris)

McKinsey, Paris, May '23 (simonapers.github.io/mckinsey.html) TUTORIAL 1: BASICS (21/4)

quantum circuits quantum Fourier transform Grover search

TUTORIAL 2: CHEMISTRY (28/4)

quantum problems quantum simulation variational quantum algorithms

TUTORIAL 3: OPTIMIZATION (26/5)

optimization problems adiabatic algorithm theory outlook

OPTIMIZATION PROBLEMS ADIABATIC ALGORITHM THEORY OUTLOOK

Optimization problems

 $\min_{x\in K} f(x)$

ubiquitous in computer science, engineering, operations research, economics, ...

Example 1: traveling salesperson

"discrete" optimization problem

solution: tour [A, D, C, B, E]

other discrete optimization problems:

packing

chip design

clustering

common heuristics: exhaustive search – greedy algorithms – local search simulated annealing – evolutionary/genetic algorithms

Example 2: neural network training

"continuous" optimization problem

solution: weight vector w = [0.129, 0.948, 0.474, ...]

other continuous optimization problems:

portfolio optimization

regression

protein folding

common algorithms: gradient descent – interior point methods Newton's method – local search (Nelder-Mead)

Optimization problems: $min_x f(x)$ (formalized)

discrete setting:

 $x \in \{0, 1\}^n$

efficient algorithm: polynomial runtime $\sim poly(n)$

however, exhaustive search: exponential runtime $\sim 2^n$

MINIMUM CUT:

given graph G = (V, E), find subset $S \subset V$ that minimizes cut $|E(S, S^c)| = |\{(i, j) \in E \mid i \in S, j \in S^c\}|$

equivalently: find $x \in \{0,1\}^n$ that minimizes

$$f(x) = \sum_{(i,j)\in E} x_i(1-x_j)$$

MINIMUM CUT:

60's: can be solved in time poly(*n*)! (e.g., Ford-Fulkerson)

in class P

= (decision) problems that can be solved by a classical computer in polynomial time

MAXIMUM CUT:

given graph G = (V, E), find subset $S \subset V$ that maximizes cut $|E(S, S^c)| = |\{(i, j) \in E \mid i \in S, j \in S^c\}|$

equivalently: find $x \in \{0,1\}^n$ that minimizes

$$f(x) = -\sum_{(i,j)\in E} x_i(1-x_j)$$

MAXIMUM CUT:

70's: NP-complete! (even to approximate within factor 16/17)

class NP

= (decision) problems that can be *verified* by a classical computer in polynomial time

problem is NP-complete if all problems in NP can be "reduced" to it P (efficiently *solvable*)

I∩
NP (efficiently verifiable)

? **P** = **NP** ?

find efficient algorithm for max cut (or TSP or ...), or prove none exists

millennium prize problem = \$1M

common belief: $P \neq NP$

however, in practice we *can* solve hard problems! (TSPs are solved, NNs are trained)

average cases are easier? reductions are "unnatural"?

two faces of optimization:

complex, theoretical algorithms solve worst case problems \leftrightarrow simple, practical heuristics solve common instances

see e.g. the "unreasonable effectiveness" of gradient descent in training NNs

Quantum algorithms for optimization

advantage less "native" than in chemistry solution $x \in \{0, 1\}^n$ described with *n* bits distinguish:

near term (non-universal, noisy) ↔ long term (universal, error-corrected)

analog (e.g., adiabatic, annealing) ↔ digital (gate-based)

Quantum algorithms for optimization: complexity classes

class **BQP**

= (decision) problems that can be solved by a quantum computer in polynomial time

quantum computers generalize classical computers $\rightarrow \mathbf{P} \subseteq \mathbf{BQP}$

common belief:

! quantum computers not expected to solve NP-complete problems (such as TSP or training NNs)

Quantum algorithms for optimization: theory vs practice?

theory:

provable polynomial speedups, but no "killer applications" with exponential speedups so far

practice:

similar to classical heuristics, quantum heuristics for hard problems might work well in practice

heuristics better fitted to near-term devices, first demonstrations but not convincing yet

base case: Grover's algorithm

quadratic speedup over exhaustive search

e.g., *n*-variable SAT formula

$$f(x) = (x_1 \lor \bar{x}_4) \land x_3 \land (\bar{x}_3 \lor x_1 \lor x_7 \lor \bar{x}_5)$$

? \exists x such that f(x) = 1 ?

= NP-complete problem

exhaustive search: time 2^n

Grover search: time $2^{n/2}$

for general SAT: 2ⁿ classically and 2^{n/2} quantumly conjectured optimal "(quantum) strong exponential time hypothesis"

for general NP problems: often faster ($\ll 2^n$) classical algorithms (e.g., branch-and-bound for vertex cover in $2^{0.35n}$)

 \rightarrow even quadratic quantum speedup not guaranteed

Optimization problems Adiabatic algorithm Theory outlook

optimization vs ground states

optimization problem

 $\min_{x\in\{0,1\}^n}f(x)$

 \rightarrow find ground state energy of Hamiltonian

$$H = \sum_{z} f(z) \left| z \right\rangle \left\langle z \right|$$

such that $H \left| x \right\rangle = f(x) \left| x \right\rangle$

value
$$f(x)$$

energy $\langle x|H|x \rangle$

optimization vs ground states: QUBO

quadratic unconstrained binary optimization (QUBO) problem:

$$\min_{x \in \{0,1\}^n} f(x), \quad \text{with} \quad f(x) = \sum_{i,j} Q_{ij} x_i x_j$$

maps to Ising Hamiltonian

$$H = \sum_{z} f(z) \left| z \right\rangle \left\langle z \right|$$

EX: use that

 $Z_i |x\rangle = (-1)^{x_i} |x\rangle$ and $Z_i Z_j |x\rangle = (-1)^{x_i + x_j} |x\rangle$

to express H in terms of I's, Z_i 's and Z_iZ_j 's

key heuristic for ground state problems: adiabatic algorithm

 \sim quantum analogue of simulated annealing

Adiabatic theorem

system Hamiltonian *H*, initial state $|\psi(0)\rangle$

evolves according to Schrödinger's equation

$$\partial_t \left| \psi(t) \right\rangle = -iH \left| \psi(t) \right\rangle$$

 $\label{eq:eigenvectors} \rightarrow \mbox{eigenvectors do not change!} \\ (up to global phase)$

 $H |\psi(0)\rangle = \lambda |\psi(0)\rangle$ then $|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle = e^{-i\lambda t} |\psi(0)\rangle$

what if Hamiltonian (i.e., system) changes?

Adiabatic theorem: A physical system remains in its instantaneous groundstate if it changes slowly enough and if there is a gap between the groundstate and the rest of the Hamiltonian's spectrum.

parameterized Hamiltonian H(s): e.g., Ising Hamiltonian with external field strength s

$$H(s) = -\sum_{\langle i,j \rangle} Z_i Z_j + s \sum_i X_i$$

1. start from $|\phi_0\rangle$ (g.s. H_0) 2. slowly change Hamiltonian from H(0) to H(1)(in time $T \gg \text{poly}(1/\Delta)$) 3. end in $\approx |\phi_1\rangle$ (g.s. H_1) (i.e., no "jumps"!)

Adiabatic quantum computation (AQC)

set up:

• initial Hamiltonian H_0 , easy to prepare ground state $|\phi_0\rangle$

> • final Hamiltonian H_1 , "target state" $|\phi_1
> angle$

> > computation:

evolve $|\phi_0
angle$ with parameterized Hamiltonian

$$H(s) = (1-s)H_0 + sH_1$$

for $s: 0 \rightarrow 1$ in time T

Adiabatic quantum computation (AQC)

= "analog" model of quantum computation, contrasts with "digital" gate-based model

if all Hamiltonians allowed: *universal* model (adiabatic → gate: Hamiltonian simulation, gate → adiabatic: "Feynman Hamiltonian")

if not: restricted model

(e.g., quantum annealers from D-Wave)

Adiabatic optimization algorithm

initial Hamiltonian $H_0 = -\sum_i X_i$, easy to prepare ground state $|\phi_0\rangle = |+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_x |x\rangle$

> final Hamiltonian $H_1 = \sum_z f(z) |z\rangle \langle z|$, "target state" $|\phi_1\rangle = |z_0\rangle$, with z_0 minimizer f

> > parameterized Hamiltonian

$$H(s) = s \sum_{z} f(z) |z\rangle \langle z| - (1-s) \sum_{i} X_{i}$$

adiabatically "turns on" magnetic interactions

Toy example: Hamming weight

quantum adiabatic algorithm finds z_0 in poly(n) time classical greedy/annealing algorithm finds z_0 in poly(n) time

Toy example: Hamming weight with a spike

$$f(z) = \begin{cases} |z| & |z| \neq n/4\\ n & |z| = n/4 \end{cases}$$

quantum adiabatic algorithm finds z_0 in poly(n) time classical greedy/annealing algorithm needs exp(n) time

"quantum tunneling" from local minimum

Adiabatic optimization algorithm

? generic scaling Δ ? (recall, runtime $\sim poly(1/\Delta)$)

random instances of NP-complete problems, variants of Hamming weight with spike:

 $\Delta \sim 1/2^n$

QAOA: quantum approximate optimization algorithm

inspired by circuit model implementation of time-*T* adiabatic algorithm:

 $\partial_t \left| \psi(t) \right\rangle = -i H(t/T) \left| \psi(t) \right\rangle$

approximation 1: for $T \gg 1$ we get $|\psi(t+1)\rangle \approx e^{-iH(t/T)} |\psi(t)\rangle$ and so

$$|\psi(T)\rangle \approx e^{-iH(1)}e^{-iH(1-1/T)}\dots e^{-iH(1/T)}e^{-iH(0)}|\psi(0)\rangle$$

approximation 2: by Lie-Trotter formula on $H(s) = (1 - s)H_0 + sH_1$, for $r \gg 1$:

$$e^{-iH(s)} \approx \left(e^{-i(1-s)H_0/r}e^{-isH_1/r}\right)^r$$

combined:

$$|\psi(T)\rangle \approx e^{-iH_1}e^{-iH_0/(Tr)}e^{-iH_1(1-1/T)/r}\dots e^{-iH_0(1-1/T)/r}e^{-iH_1/(Tr)}e^{-iH_0}|\psi(0)\rangle$$

= product of $e^{-iH_1\delta}$'s and $e^{-iH_0\delta}$'s !

Quantum approximate optimization algorithm (QAOA)

variational circuit based on mixer Hamiltonian

$$e^{-i\phi H_1} = e^{-i\phi \sum_i X_i}$$

and cost Hamiltonian

$$e^{-i\theta H_0} = e^{-i\theta \sum f(z)|z\rangle\langle z|}$$

 \rightarrow depth-*p* QAOA circuit with parameters { $\theta_1, \phi_1, \dots, \theta_p, \phi_p$ }:

correctness adiabatic algorithm \Rightarrow correctness QAOA (for $p \rightarrow \infty$)

OPTIMIZATION PROBLEMS ADIABATIC ALGORITHM THEORY OUTLOOK

Theory outlook: Grover

base case: quadratic speedup over exhaustive search

e.g., *n*-variable SAT formula in time $2^{n/2}$ (versus time 2^n classically)

conjectured best possible for general SAT

Theory outlook: Grover

3-SAT (\leq 3 variables per clause)

 $(x_1 \vee \bar{x}_4) \wedge x_3 \wedge (\bar{x}_3 \vee x_1 \vee x_7)$

solved by Schöning's algorithm in time $2^{0.415n} \ll 2^{n/2}!$

uses local search subroutine

 \rightarrow local search + Grover = time $\sqrt{2^{0.415n}} = 2^{0.207n}$

similar situation for **TSP** (but more work and smaller speedup): - exhaustive search: n^n - dynamic programming: 2^n - dynamic programming + Grover: $2^{0.79n}$ Grover might not always give speedup!

e.g., unclear how to combine with other heuristics for fast SAT solving:

backtracking, branch-and-bound

simulated annealing

Perturb (Hill Climbing)

Global

Theory outlook: quantum walks

= quantum version of random walks

local exploration of state space / graphs, can give quadratically faster "hitting time"

polynomial quantum walk speedups for algorithms based on backtracking, branch-and-bound, simulated annealing

Theory outlook: HHL

linear equation:

ax = b

 \rightarrow solution x = b/a

N-dimensional linear system:

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}$$

 \rightarrow solution $x = A^{-1}b$

computing x is bottleneck in engineering, machine learning, economics, computer graphics, ...

Theory outlook: HHL

Harrow-Hassidim-Lloyd '08:

quantum algorithm for linear system solving, returns *quantum solution* $|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$

$$|b\rangle = HHL(A) = |x\rangle$$

complexity: poly(cond(A), log n)vs. poly(n) of naïve classical algorithms

Theory outlook: HHL

(rough) idea:

interpret *A* as Hamiltonian, use Hamiltonian simulation e^{-iAt} to map

$$\begin{aligned} |b\rangle &\to e^{-iAt} |b\rangle = \sum_{k=0}^{\infty} \frac{1}{k!} (-iAt)^k |b\rangle \\ &\to \dots \\ &\to \sum_{k=0}^{\infty} (I-A)^k |b\rangle = A^{-1} |b\rangle = |x| \end{aligned}$$

caveats:

- output is quantum state
 - QRAM issues
 - dequantization

Theory outlook: other

from HHL and Hamiltonian simulation: quantum algorithms for LPs and SDPs, interior point methods, "quantum linear algebra" for machine learning

from quantum query complexity:

quantum oracle speedups for gradient estimation, convex optimization

for more: see quantumalgorithmzoo.org

SUMMARY:

OPTIMIZATION PROBLEMS

quantum (probably) cannot solve NP-complete problems Grover: quadratic baseline

ADIABATIC ALGORITHM

main heuristic, quantum version of simulated annealing viable in near-term inspiration for QAOA

THEORY OUTLOOK

exist provable quantum speedups often polynomial many caveats, may be impractical

Figure references

traveling salesperson: https://annealing-cloud.com/en/knowledge/1.html chip: https://www.wired.com/story/fit-billions-transistors-chip-let-ai-do/ clustering: https://www.geeksforgeeks.org/clustering-in-machine-learning/ neural network: https://tikz.net/neural networks/ annealing 1: http://fri.oden.utexas.edu/fri/Labs 2019/lab5/part2.php adiabatic: https://medium.com/@guantum wa/guantum-annealing-cdb129e96601 backtracking: https://www.javatpoint.com/backtracking-introduction branch-and-bound: https://artint.info/2e/html/ArtInt2e.Ch3.S8.SS1.html annealing 2: https://medium.com/analytics-vidhya/simulated-annealing-869e171e763c guantum walk: https://www.researchgate.net/publication/45898194 Discrete-Time Quantum Walk - Dynamics and Applications