
QUANTUM ALGORITHMS 3:
OPTIMIZATION

Simon Apers
(CNRS & IRIF, Paris)

McKinsey, Paris, May ’23
(simonapers.github.io/mckinsey.html)

simonapers.github.io/mckinsey.html

TUTORIAL 1: BASICS (21/4)

quantum circuits
quantum Fourier transform

Grover search

TUTORIAL 2: CHEMISTRY (28/4)

quantum problems
quantum simulation

variational quantum algorithms

TUTORIAL 3: OPTIMIZATION (26/5)

optimization problems
adiabatic algorithm

theory outlook

1

OPTIMIZATION PROBLEMS

ADIABATIC ALGORITHM

THEORY OUTLOOK

2

Optimization problems

min
x∈K

f (x)

ubiquitous in computer science, engineering,
operations research, economics, . . .

3

Example 1: traveling salesperson

“discrete” optimization problem

solution: tour [A,D,C,B,E]

4

other discrete optimization problems:

packing chip design clustering

common heuristics:
exhaustive search − greedy algorithms − local search
simulated annealing − evolutionary/genetic algorithms

5

Example 2: neural network training

“continuous” optimization problem

solution: weight vector w = [0.129, 0.948, 0.474, . . .]

6

other continuous optimization problems:

portfolio optimization regression protein folding

common algorithms:
gradient descent − interior point methods

Newton’s method − local search (Nelder-Mead)

7

Optimization problems: minx f (x) (formalized)

discrete setting:

x ∈ {0, 1}n

efficient algorithm:
polynomial runtime ∼ poly(n)

however, exhaustive search:
exponential runtime ∼ 2n

8

MINIMUM CUT:

given graph G = (V,E), find subset S ⊂ V that minimizes cut

|E(S, Sc)| = |{(i, j) ∈ E | i ∈ S, j ∈ Sc}|

equivalently: find x ∈ {0, 1}n that minimizes

f (x) =
∑

(i,j)∈E

xi(1 − xj)

9

MINIMUM CUT:

60’s: can be solved in time poly(n)!
(e.g., Ford-Fulkerson)

in class P
= (decision) problems that can be solved

by a classical computer in polynomial time

10

MAXIMUM CUT:

given graph G = (V,E), find subset S ⊂ V that maximizes cut

|E(S, Sc)| = |{(i, j) ∈ E | i ∈ S, j ∈ Sc}|

equivalently: find x ∈ {0, 1}n that minimizes

f (x) = −
∑

(i,j)∈E

xi(1 − xj)

11

MAXIMUM CUT:

70’s: NP-complete!
(even to approximate within factor 16/17)

class NP
= (decision) problems that can be verified
by a classical computer in polynomial time

problem is NP-complete
if all problems in NP can be “reduced” to it

12

P (efficiently solvable)

⊆

NP (efficiently verifiable)

? P = NP ?

find efficient algorithm for max cut (or TSP or . . .),
or prove none exists

millennium prize problem = $1M

13

common belief: P ̸= NP

however, in practice we can solve hard problems!
(TSPs are solved, NNs are trained)

average cases are easier? reductions are “unnatural”?

two faces of optimization:
complex, theoretical algorithms solve worst case problems
↔ simple, practical heuristics solve common instances

see e.g. the “unreasonable effectiveness”
of gradient descent in training NNs

14

Quantum algorithms for optimization

advantage less “native” than in chemistry

solution x ∈ {0, 1}n described with n bits

distinguish:

near term (non-universal, noisy)
↔ long term (universal, error-corrected)

analog (e.g., adiabatic, annealing)
↔ digital (gate-based)

15

Quantum algorithms for optimization: complexity classes

class BQP
= (decision) problems that can be solved

by a quantum computer in polynomial time

quantum computers generalize classical computers
→ P ⊆ BQP

common belief:

! quantum computers not expected to solve NP-complete problems
(such as TSP or training NNs)

16

Quantum algorithms for optimization: theory vs practice?

theory:

provable polynomial speedups,
but no “killer applications” with exponential speedups so far

practice:

similar to classical heuristics,
quantum heuristics for hard problems might work well in practice

heuristics better fitted to near-term devices,
first demonstrations but not convincing yet

17

base case: Grover’s algorithm

quadratic speedup over exhaustive search

e.g., n-variable SAT formula

f (x) = (x1 ∨ x̄4) ∧ x3 ∧ (x̄3 ∨ x1 ∨ x7 ∨ x̄5)

? ∃ x such that f (x) = 1 ?

= NP-complete problem

exhaustive search: time 2n

Grover search: time 2n/2

18

for general SAT:
2n classically and 2n/2 quantumly conjectured optimal

“(quantum) strong exponential time hypothesis”

for general NP problems:
often faster (≪ 2n) classical algorithms

(e.g., branch-and-bound for vertex cover in 20.35n)

→ even quadratic quantum speedup not guaranteed

19

OPTIMIZATION PROBLEMS

ADIABATIC ALGORITHM

THEORY OUTLOOK

20

optimization vs ground states

optimization problem

min
x∈{0,1}n

f (x)

→ find ground state energy of Hamiltonian

H =
∑

z

f (z) |z⟩ ⟨z|

such that H |x⟩ = f (x) |x⟩

21

optimization vs ground states: QUBO

quadratic unconstrained binary optimization (QUBO) problem:

min
x∈{0,1}n

f (x), with f (x) =
∑

i,j

Qijxixj

maps to Ising Hamiltonian

H =
∑

z

f (z) |z⟩ ⟨z|

EX: use that

Zi |x⟩ = (−1)xi |x⟩ and ZiZj |x⟩ = (−1)xi+xj |x⟩

to express H in terms of I’s, Zi’s and ZiZj’s

22

key heuristic for ground state problems:
adiabatic algorithm

∼ quantum analogue of simulated annealing

23

Adiabatic theorem

system Hamiltonian H, initial state |ψ(0)⟩

evolves according to Schrödinger’s equation

∂t |ψ(t)⟩ = −iH |ψ(t)⟩

→ eigenvectors do not change!
(up to global phase)

H |ψ(0)⟩ = λ |ψ(0)⟩ then

|ψ(t)⟩ = e−iHt |ψ(0)⟩ = e−iλt |ψ(0)⟩

24

what if Hamiltonian (i.e., system) changes?

Adiabatic theorem: A physical system remains in its instantaneous
groundstate if it changes slowly enough and if there is a gap between
the groundstate and the rest of the Hamiltonian’s spectrum.

25

parameterized Hamiltonian H(s):
e.g., Ising Hamiltonian with external field strength s

H(s) = −
∑

⟨i,j⟩ ZiZj + s
∑

i Xi

1. start from |ϕ0⟩ (g.s. H0)
2. slowly change Hamiltonian from H(0) to H(1)

(in time T ≫ poly(1/∆))
3. end in ≈ |ϕ1⟩ (g.s. H1)

(i.e., no “jumps”!)

26

Adiabatic quantum computation (AQC)

set up:

• initial Hamiltonian H0,
easy to prepare ground state |ϕ0⟩

• final Hamiltonian H1,
“target state” |ϕ1⟩

computation:

evolve |ϕ0⟩ with parameterized Hamiltonian

H(s) = (1 − s)H0 + sH1

for s : 0 → 1 in time T

27

Adiabatic quantum computation (AQC)

= “analog” model of quantum computation,
contrasts with “digital” gate-based model

if all Hamiltonians allowed:
universal model

(adiabatic → gate: Hamiltonian simulation,
gate → adiabatic: “Feynman Hamiltonian”)

if not:
restricted model

(e.g., quantum annealers from D-Wave)

28

Adiabatic optimization algorithm

initial Hamiltonian H0 = −
∑

i Xi,
easy to prepare ground state |ϕ0⟩ = |+⟩⊗n = 1√

2n

∑
x |x⟩

final Hamiltonian H1 =
∑

z f (z) |z⟩ ⟨z|,
“target state” |ϕ1⟩ = |z0⟩, with z0 minimizer f

parameterized Hamiltonian

H(s) = s
∑

z

f (z) |z⟩ ⟨z| − (1 − s)
∑

i

Xi

adiabatically “turns on” magnetic interactions

29

Toy example: Hamming weight

f (z) = |z|

quantum adiabatic algorithm finds z0 in poly(n) time
classical greedy/annealing algorithm finds z0 in poly(n) time

30

Toy example: Hamming weight with a spike

f (z) =

{
|z| |z| ≠ n/4
n |z| = n/4

quantum adiabatic algorithm finds z0 in poly(n) time
classical greedy/annealing algorithm needs exp(n) time

“quantum tunneling” from local minimum
31

Adiabatic optimization algorithm

? generic scaling ∆ ?
(recall, runtime ∼ poly(1/∆))

random instances of NP-complete problems,
variants of Hamming weight with spike:

∆ ∼ 1/2n

32

QAOA: quantum approximate optimization algorithm

inspired by circuit model implementation
of time-T adiabatic algorithm:

∂t |ψ(t)⟩ = −iH(t/T) |ψ(t)⟩

approximation 1:
for T ≫ 1 we get

|ψ(t + 1)⟩ ≈ e−iH(t/T) |ψ(t)⟩

and so

|ψ(T)⟩ ≈ e−iH(1)e−iH(1−1/T) . . . e−iH(1/T)e−iH(0) |ψ(0)⟩

33

approximation 2:
by Lie-Trotter formula on H(s) = (1 − s)H0 + sH1, for r ≫ 1:

e−iH(s) ≈
(

e−i(1−s)H0/re−isH1/r
)r

combined:

|ψ(T)⟩ ≈ e−iH1e−iH0/(Tr)e−iH1(1−1/T)/r . . . e−iH0(1−1/T)/re−iH1/(Tr)e−iH0 |ψ(0)⟩

= product of e−iH1δ ’s and e−iH0δ ’s !

34

Quantum approximate optimization algorithm (QAOA)

variational circuit based on mixer Hamiltonian

e−iϕH1 = e−iϕ
∑

i Xi

and cost Hamiltonian

e−iθH0 = e−iθ
∑

f (z)|z⟩⟨z|

→ depth-p QAOA circuit with parameters {θ1, ϕ1, . . . , θp, ϕp}:

correctness adiabatic algorithm ⇒ correctness QAOA (for p → ∞)
35

OPTIMIZATION PROBLEMS

ADIABATIC ALGORITHM

THEORY OUTLOOK

36

Theory outlook: Grover

base case: quadratic speedup over exhaustive search

e.g., n-variable SAT formula in time 2n/2

(versus time 2n classically)

conjectured best possible for general SAT

37

Theory outlook: Grover

3-SAT (≤ 3 variables per clause)

(x1 ∨ x̄4) ∧ x3 ∧ (x̄3 ∨ x1 ∨ x7)

solved by Schöning’s algorithm in time 20.415n ≪ 2n/2!

uses local search subroutine

→ local search + Grover = time
√

20.415n = 20.207n

similar situation for TSP (but more work and smaller speedup):
− exhaustive search: nn

− dynamic programming: 2n

− dynamic programming + Grover: 20.79n

38

Grover might not always give speedup!

e.g., unclear how to combine with other heuristics for fast SAT solving:

backtracking, branch-and-bound simulated annealing

39

Theory outlook: quantum walks

= quantum version of random walks

RW on grid RW vs QW on line

local exploration of state space / graphs,
can give quadratically faster “hitting time”

polynomial quantum walk speedups for algorithms based on
backtracking, branch-and-bound, simulated annealing

40

Theory outlook: HHL

linear equation:

ax = b

→ solution x = b/a

N-dimensional linear system: A

x

 =

b


→ solution x = A−1b

computing x is bottleneck in
engineering, machine learning, economics, computer graphics, . . .

41

Theory outlook: HHL

Harrow-Hassidim-Lloyd ’08:
quantum algorithm for linear system solving,

returns quantum solution |x⟩ =
∑N

i=1 xi |i⟩

complexity: poly(cond(A), log n)
vs. poly(n) of naïve classical algorithms

42

Theory outlook: HHL

(rough) idea:
interpret A as Hamiltonian,

use Hamiltonian simulation e−iAt to map

|b⟩ → e−iAt |b⟩ =
∞∑

k=0

1
k!

(−iAt)k |b⟩

→ . . .

→
∞∑

k=0

(I − A)k |b⟩ = A−1 |b⟩ = |x⟩

caveats:
− output is quantum state

− QRAM issues
− dequantization

43

Theory outlook: other

from HHL and Hamiltonian simulation:
quantum algorithms for LPs and SDPs, interior point methods,

“quantum linear algebra” for machine learning

from quantum query complexity:
quantum oracle speedups for gradient estimation,

convex optimization

for more:
see quantumalgorithmzoo.org

44

SUMMARY:
OPTIMIZATION PROBLEMS

quantum (probably) cannot solve NP-complete problems
Grover: quadratic baseline

ADIABATIC ALGORITHM

main heuristic, quantum version of simulated annealing
viable in near-term

inspiration for QAOA

THEORY OUTLOOK

exist provable quantum speedups
often polynomial

many caveats, may be impractical

45

Figure references

traveling salesperson: https://annealing-cloud.com/en/knowledge/1.html

chip: https://www.wired.com/story/fit-billions-transistors-chip-let-ai-do/

clustering: https://www.geeksforgeeks.org/clustering-in-machine-learning/

neural network: https://tikz.net/neural_networks/

annealing 1: http://fri.oden.utexas.edu/fri/Labs_2019/lab5/part2.php

adiabatic: https://medium.com/@quantum_wa/quantum-annealing-cdb129e96601

backtracking: https://www.javatpoint.com/backtracking-introduction

branch-and-bound: https://artint.info/2e/html/ArtInt2e.Ch3.S8.SS1.html

annealing 2: https://medium.com/analytics-vidhya/simulated-annealing-869e171e763c

quantum walk: https://www.researchgate.net/publication/45898194_Discrete-
Time_Quantum_Walk_-_Dynamics_and_Applications

46

