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Circuits, QFT, Grover: exercises

Lecturer: Simon Apers (apers@irif.fr)

Exercise 1 (QFT). What does F2, the QFT on 1 qubit, correspond to? Consider the following
circuit, where the last operation denotes swapping of the two qubits.

Show that this circuit corresponds to F4, the QFT on 2 qubits.

Exercise 2 (Oracles). We described a bit oracle Ob and a phase oracle Op for accessing a function
f : {0, 1}n → {0, 1}. They are defined as follows, with z ∈ {0, 1}n and w ∈ {0, 1}:

We can show that both oracles are equivalent in a sense.

� Show that the phase oracle can simulate the bit oracle:

� Show that the bit oracle can simulate the phase oracle:

Exercise 3 (Quantum phase estimation). Assume access to a unitary U and eigenvector |ϕ⟩ such
that U |ϕ⟩ = e2πiθ |ϕ⟩ for some θ ∈ [0, 1). To avoid approximation issues, we assume that Nθ is an
integer for some N = 2n. Consider the controlled version of U , represented by the following circuit:

where now k ∈ {0, 1, . . . , N − 1}. The circuit for quantum phase estimation is the following:

Show that we can learn θ from the output of this circuit.
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Exercise 4 (Amplitude amplification). A useful variation on Grover’s algorithm is called amplitude
amplification. Assume that we have access to a unitary U such that

U |0n⟩ |0⟩ = |ψ⟩ = √
p |ψ1⟩ |1⟩+

√
1− p |ψ0⟩ |0⟩ ,

and we would like to prepare the “marked” state |ψ1⟩.

� The following circuit presents a simple solution. What is its success probability?

Amplitude amplification improves on this. Consider the amplitude amplification operator:

with reflections Rψ = 2 |ψ⟩ ⟨ψ| − I and Rψ0 = 2 |ψ0, 0⟩ ⟨ψ0, 0| − I.

� What is the success probability of the following circuit?

Exercise 5 (Quantum approximate counting). Check that the amplitude amplification operator A
has eigenvectors and corresponding eigenvalues

|ψ±⟩ =
|ψ1, 1⟩ ± i |ψ0, 0⟩√

2
, λ± = e±2iθ,

with θ such that sin(θ) =
√
p. Use quantum phase estimation on the initial state

|ψ⟩ = −i√
2
(eiθ |ψ+⟩ − e−iθ |ψ−⟩).

to estimate θ (and hence p).
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Exercise 6 (Hadamard transform). A variation on the quantum Fourier transform is the Hadamard
transform HN for N = 2n. It is defined by HN = H⊗n, which corresponds to the circuit

� What is HN |0n⟩ equal to?

� What is HN |k⟩ = HN |k1 . . . kn⟩ equal to? Use the inner product j · k =
∑

ℓ jℓkℓ.
1

Exercise 7 (Bernstein-Vazirani algorithm). Consider a string x ∈ {0, 1}N , for N = 2n, that is
determined by some unknown a ∈ {0, 1}n such that xi = (i · a) (mod 2). We can access the string
through a “phase oracle” Ox |i⟩ = (−1)xi |i⟩. What is the output of the following circuit?

Exercise 8 (Factoring reduction (optional)). Here we walk through Shor’s reduction from factoring
to period finding. Recall that we are given an n-bit integer N such that 2n−1 ≤ N < 2n, and we
wish to find a (nontrivial) factor of N . Without loss of generality, we can assume that N is odd
and not a prime power. Why?2

Now pick x ∈ {2, . . . , N − 1} uniformly at random. If gcd(N, x) > 1 then we can run Euclid’s
algorithm to find a factor. Hence, assume that N and x are coprime, and consider the series

x0 = 1 (mod N), x (mod N), x2 (mod N), . . .

Since N and x are coprime, there does not exist s such that xs = 0 (mod N). Show that this implies
that the series must have a period r ≤ N for which xr = 1 (mod N). It is precisely this factor that
is calculated using quantum period finding.

One can show (not in this exercise!) that, with probability at least 1/2 over the choice of x, the
period r will be even and both xr/2 + 1 and xr/2 − 1 are not multiples of N . Use xr = 1 (mod N)
to show that this implies that both xr/2 + 1 and xr/2 − 1 must share a (nontrivial) factor with N .
Once we computed r, we can then find these factors by computing gcd(xr/2 ± 1, N).

1Hint: show that H |kℓ⟩ = 1√
2

∑1
jℓ=0(−1)jℓkℓ |jℓ⟩.

2Hint: if N = pk for some prime p ≥ 2 then necessarily k ≤ n.


