Circuits, QFT, Grover: exercises

Lecturer: Simon Apers (apers@irif.fr)
Exercise 1 (QFT). What does F_{2}, the QFT on 1 qubit, correspond to? Consider the following circuit, where the last operation denotes swapping of the two qubits.

Show that this circuit corresponds to F_{4}, the QFT on 2 qubits.
Exercise 2 (Oracles). We described a bit oracle O_{b} and a phase oracle O_{p} for accessing a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. They are defined as follows, with $z \in\{0,1\}^{n}$ and $w \in\{0,1\}$:

$$
\begin{aligned}
& |z\rangle-O_{b}-|z\rangle \\
& |w\rangle-|w \oplus f(z)\rangle \quad|z\rangle-O_{p}-(-1)^{f(z)}|z\rangle
\end{aligned}
$$

We can show that both oracles are equivalent in a sense.

- Show that the phase oracle can simulate the bit oracle:

- Show that the bit oracle can simulate the phase oracle:

Exercise 3 (Quantum phase estimation). Assume access to a unitary U and eigenvector $|\phi\rangle$ such that $U|\phi\rangle=e^{2 \pi i \theta}|\phi\rangle$ for some $\theta \in[0,1)$. To avoid approximation issues, we assume that $N \theta$ is an integer for some $N=2^{n}$. Consider the controlled version of U, represented by the following circuit:

where now $k \in\{0,1, \ldots, N-1\}$. The circuit for quantum phase estimation is the following:

Show that we can learn θ from the output of this circuit.

Exercise 4 (Amplitude amplification). A useful variation on Grover's algorithm is called amplitude amplification. Assume that we have access to a unitary U such that

$$
U\left|0^{n}\right\rangle|0\rangle=|\psi\rangle=\sqrt{p}\left|\psi_{1}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{0}\right\rangle|0\rangle,
$$

and we would like to prepare the "marked" state $\left|\psi_{1}\right\rangle$.

- The following circuit presents a simple solution. What is its success probability?

Amplitude amplification improves on this. Consider the amplitude amplification operator:

with reflections $R_{\psi}=2|\psi\rangle\langle\psi|-I$ and $R_{\psi_{0}}=2\left|\psi_{0}, 0\right\rangle\left\langle\psi_{0}, 0\right|-I$.

- What is the success probability of the following circuit?

Exercise 5 (Quantum approximate counting). Check that the amplitude amplification operator A has eigenvectors and corresponding eigenvalues

$$
\left|\psi_{ \pm}\right\rangle=\frac{\left|\psi_{1}, 1\right\rangle \pm i\left|\psi_{0}, 0\right\rangle}{\sqrt{2}}, \quad \lambda_{ \pm}=e^{ \pm 2 i \theta}
$$

with θ such that $\sin (\theta)=\sqrt{p}$. Use quantum phase estimation on the initial state

$$
|\psi\rangle=\frac{-i}{\sqrt{2}}\left(e^{i \theta}\left|\psi_{+}\right\rangle-e^{-i \theta}\left|\psi_{-}\right\rangle\right) .
$$

to estimate θ (and hence p).

Exercise 6 (Hadamard transform). A variation on the quantum Fourier transform is the Hadamard transform H_{N} for $N=2^{n}$. It is defined by $H_{N}=H^{\otimes n}$, which corresponds to the circuit

- What is $H_{N}\left|0^{n}\right\rangle$ equal to?
- What is $H_{N}|k\rangle=H_{N}\left|k_{1} \ldots k_{n}\right\rangle$ equal to? Use the inner product $j \cdot k=\sum_{\ell} j_{\ell} k_{\ell} .{ }^{1}$

Exercise 7 (Bernstein-Vazirani algorithm). Consider a string $x \in\{0,1\}^{N}$, for $N=2^{n}$, that is determined by some unknown $a \in\{0,1\}^{n}$ such that $x_{i}=(i \cdot a)(\bmod 2)$. We can access the string through a "phase oracle" $O_{x}|i\rangle=(-1)^{x_{i}}|i\rangle$. What is the output of the following circuit?

Exercise 8 (Factoring reduction (optional)). Here we walk through Shor's reduction from factoring to period finding. Recall that we are given an n-bit integer N such that $2^{n-1} \leq N<2^{n}$, and we wish to find a (nontrivial) factor of N. Without loss of generality, we can assume that N is odd and not a prime power. Why? ${ }^{2}$

Now pick $x \in\{2, \ldots, N-1\}$ uniformly at random. If $\operatorname{gcd}(N, x)>1$ then we can run Euclid's algorithm to find a factor. Hence, assume that N and x are coprime, and consider the series

$$
x^{0}=1(\bmod N), \quad x(\bmod N), \quad x^{2}(\bmod N), \quad \cdots
$$

Since N and x are coprime, there does not exist s such that $x^{s}=0(\bmod N)$. Show that this implies that the series must have a period $r \leq N$ for which $x^{r}=1(\bmod N)$. It is precisely this factor that is calculated using quantum period finding.

One can show (not in this exercise!) that, with probability at least $1 / 2$ over the choice of x, the period r will be even and both $x^{r / 2}+1$ and $x^{r / 2}-1$ are not multiples of N. Use $x^{r}=1(\bmod N)$ to show that this implies that both $x^{r / 2}+1$ and $x^{r / 2}-1$ must share a (nontrivial) factor with N. Once we computed r, we can then find these factors by computing $\operatorname{gcd}\left(x^{r / 2} \pm 1, N\right)$.

[^0]
[^0]: ${ }^{1}$ Hint: show that $H\left|k_{\ell}\right\rangle=\frac{1}{\sqrt{2}} \sum_{j_{\ell}=0}^{1}(-1)^{j_{\ell} k_{\ell}}\left|j_{\ell}\right\rangle$.
 ${ }^{2}$ Hint: if $N=p^{k}$ for some prime $p \geq 2$ then necessarily $k \leq n$.

