Quantum algorithms 1

Circuits, QFT, Grover: exercises

Lecturer: Simon Apers (apers@irif.fr)

Exercise 1 (QFT). What does F_2 , the QFT on 1 qubit, correspond to? Consider the following circuit, where the last operation denotes swapping of the two qubits.

Show that this circuit corresponds to F_4 , the QFT on 2 qubits.

Exercise 2 (Oracles). We described a bit oracle O_b and a phase oracle O_p for accessing a function $f : \{0,1\}^n \to \{0,1\}$. They are defined as follows, with $z \in \{0,1\}^n$ and $w \in \{0,1\}$:

$$\begin{array}{c|c} |z\rangle & & \\ \hline & & \\ |w\rangle & & \\ \hline & & \\ |w \oplus f(z)\rangle \end{array} \qquad |z\rangle - O_p - (-1)^{f(z)} |z\rangle$$

We can show that both oracles are equivalent in a sense.

• Show that the phase oracle can simulate the bit oracle:

• Show that the bit oracle can simulate the phase oracle:

Exercise 3 (Quantum phase estimation). Assume access to a unitary U and eigenvector $|\phi\rangle$ such that $U |\phi\rangle = e^{2\pi i\theta} |\phi\rangle$ for some $\theta \in [0, 1)$. To avoid approximation issues, we assume that $N\theta$ is an integer for some $N = 2^n$. Consider the controlled version of U, represented by the following circuit:

where now $k \in \{0, 1, ..., N-1\}$. The circuit for quantum phase estimation is the following:

Show that we can learn θ from the output of this circuit.

Exercise 4 (Amplitude amplification). A useful variation on Grover's algorithm is called *amplitude amplification*. Assume that we have access to a unitary U such that

$$U \ket{0^n} \ket{0} = \ket{\psi} = \sqrt{p} \ket{\psi_1} \ket{1} + \sqrt{1-p} \ket{\psi_0} \ket{0}$$

and we would like to prepare the "marked" state $|\psi_1\rangle$.

• The following circuit presents a simple solution. What is its success probability?

Amplitude amplification improves on this. Consider the amplitude amplification operator:

with reflections $R_{\psi} = 2 |\psi\rangle \langle \psi| - I$ and $R_{\psi_0} = 2 |\psi_0, 0\rangle \langle \psi_0, 0| - I$.

• What is the success probability of the following circuit?

Exercise 5 (Quantum approximate counting). Check that the amplitude amplification operator A has eigenvectors and corresponding eigenvalues

$$|\psi_{\pm}\rangle = \frac{|\psi_1, 1\rangle \pm i |\psi_0, 0\rangle}{\sqrt{2}}, \qquad \lambda_{\pm} = e^{\pm 2i\theta},$$

with θ such that $\sin(\theta) = \sqrt{p}$. Use quantum phase estimation on the initial state

$$\left|\psi\right\rangle = \frac{-i}{\sqrt{2}} (e^{i\theta} \left|\psi_{+}\right\rangle - e^{-i\theta} \left|\psi_{-}\right\rangle).$$

to estimate θ (and hence p).

Exercise 6 (Hadamard transform). A variation on the quantum Fourier transform is the Hadamard transform H_N for $N = 2^n$. It is defined by $H_N = H^{\otimes n}$, which corresponds to the circuit

- What is $H_N |0^n\rangle$ equal to?
- What is $H_N |k\rangle = H_N |k_1 \dots k_n\rangle$ equal to? Use the inner product $j \cdot k = \sum_{\ell} j_{\ell} k_{\ell}$.¹

Exercise 7 (Bernstein-Vazirani algorithm). Consider a string $x \in \{0,1\}^N$, for $N = 2^n$, that is determined by some unknown $a \in \{0,1\}^n$ such that $x_i = (i \cdot a) \pmod{2}$. We can access the string through a "phase oracle" $O_x |i\rangle = (-1)^{x_i} |i\rangle$. What is the output of the following circuit?

Exercise 8 (Factoring reduction (optional)). Here we walk through Shor's reduction from factoring to period finding. Recall that we are given an *n*-bit integer N such that $2^{n-1} \leq N < 2^n$, and we wish to find a (nontrivial) factor of N. Without loss of generality, we can assume that N is odd and not a prime power. Why?²

Now pick $x \in \{2, \ldots, N-1\}$ uniformly at random. If gcd(N, x) > 1 then we can run Euclid's algorithm to find a factor. Hence, assume that N and x are coprime, and consider the series

 $x^0 = 1 \pmod{N}, \qquad x \pmod{N}, \qquad x^2 \pmod{N}, \qquad \dots$

Since N and x are coprime, there does not exist s such that $x^s = 0 \pmod{N}$. Show that this implies that the series must have a period $r \leq N$ for which $x^r = 1 \pmod{N}$. It is precisely this factor that is calculated using quantum period finding.

One can show (not in this exercise!) that, with probability at least 1/2 over the choice of x, the period r will be even and both $x^{r/2} + 1$ and $x^{r/2} - 1$ are not multiples of N. Use $x^r = 1 \pmod{N}$ to show that this implies that both $x^{r/2} + 1$ and $x^{r/2} - 1$ must share a (nontrivial) factor with N. Once we computed r, we can then find these factors by computing $gcd(x^{r/2} \pm 1, N)$.

¹Hint: show that $H |k_{\ell}\rangle = \frac{1}{\sqrt{2}} \sum_{j_{\ell}=0}^{1} (-1)^{j_{\ell}k_{\ell}} |j_{\ell}\rangle$. ²Hint: if $N = p^k$ for some prime $p \ge 2$ then necessarily $k \le n$.