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Foreword

The theme that underlies this thesis is the mutualist relation between classical walks
and quantum walks on graphs, the latter being a promising algorithmic component
of future quantum computers. We study both sides of this coin. On the one side
we prove how classical walks can simulate quantum walks. This allows the use
of folklore bounds on the behavior of classical walks to study speed limits on
quantum walks, a question which had long evaded progress. On the other side, we
prove how quantum walks can be used to speed up the behavior of a large class
of classical walks. This leads to a new quantum algorithm which we call quantum
walk fast-forwarding. We show that this algorithm allows to naturally speed up
classical walk algorithms for search and property testing on graphs.

The work is theoretical and mathematical, and supposed to be relevant for
quantum computers that should some day exist. I feel proud of this work, and am
indebted to many people. Foremost I must thank my supervisor Alain Sarlette, you
have been the best supervisor I could wish for, if only for learning me that no-go
proofs are traffic diversions rather than dead ends. This work would not have been
possible without you. I collaborated on different parts of this thesis with Francesco
Ticozzi and Peter Høyer, to both of which I owe my gratitude. I am thankful for
discussing with a great number of people, the following of which I must thank
in particular: David Feder, Balász Gerencsér, Ronald de Wolf, Jérémie Roland,
Michiel Burgelman, Tim Depraetere, Florian Adriaens, Arthur Van Camp, Danial
Dervovic, Pieter Claeys, Julien Hendrickx, Dirk Aeyels and Lode Wylleman. I
also wish to sincerely thank my parents, being the amazing, loving and supportive
people they are, as well as the entire rest of my family and family-in-law, friends
and colleagues. My last words, finally, are reserved for my loved and beautiful wife
Elisa: this work is dedicated to you and our soon-to-be-born wonder.

Ghent, January 2019 Simon Apers





Synopsis

This thesis studies quantum walks on graphs, the quantum counterpart of random
walks and Markov chains on graphs. It is hard to overstate the importance of
the latter to fields such as computer science, physics, mathematics, economics and
biology. They have been successful both as away of describing and studying existing
phenomena, and as an algorithmic tool to solve computational problems. With the
uprise of quantum computing and the so-called “second quantum revolution”,
quantum walks are announced to serve a similar role, both for describing existing
phenomena and for solving computational problems. With the subject gaining
momentum less than two decades ago, many interesting questions and research
directions remain open or unexplored. The work presented in this thesis studies the
mutualist interface and relationship between quantum and classical walks. In very
rough strokes, we ask the question of whether classical walks can simulate quantum
walks, and conversely, to what extent quantum walks can simulate classical walks.
This addresses both sides of a coin, one of which was open, one of which largely
unexplored.

In the first part of this thesis we study the simulation of quantum walks using
classical walks. A particular interest of the latter is its mixing behavior on graphs,
a valued feature that allows to efficiently sample from large state spaces, and is
relevant again both from a physical and a computational perspective. The analysis
of the mixing behavior of classical walks is a field on its own, with a broad
scale of techniques both for designing appropriate walks and for estimating and
accelerating their mixing performance. Towards this latter aspect, speeding up the
mixing behavior of classical walks, quantum walks have been shown to hold much
potential. A paradigmatic example is the cycle graph, on which a quantumwalk was
shown to provide a quadratic speedup in mixing as compared to a classical walk.
This early observation initiated much subsequent research and interest on the topic,
leading to both a range of results and a range of open questions on quantum walk
mixing. One of these open questions, which will be central to this thesis part, is the
exact speedup that quantum walks can achieve over classical walks. Our approach
towards solving this question is motivated by another observation on the cycle
graph: if we allow the random walk to have an additional memory slot, which is
implicitly assumed for the quantumwalk, then we can similarly improve the mixing
time quadratically, be it in a purely classical manner. The resulting walk is called
a lifted Markov chain. Driven by this example, we raise the question of whether
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4 Synopsis

such lifted Markov chains can always achieve the same speedup as quantum walks
can. By building on ideas from hidden variable theories in quantum mechanics,
we will show that indeed for a broad class of quantum walks there exists a lifted
Markov chain that effectively simulates the quantum walk dynamics, and therefore
mixing performance. As a critical derivative of this study we are able to prove
speed limits on the dynamics of a quantum walk. How long does it take a quantum
walk to reach a part of the graph? Also, can it do so faster than classical Markov
chains? The question of speed limits is well studied for the latter, and has led to
the concept of conductance bounds, yielding an approach that is both elegant and
intuitive. The conductance of a graph quantifies how well-knit or connected it is,
and conductance bounds relate this property to the speed at which Markov chains
can propagate through the graph. Since we can prove such conductance bounds for
lifted Markov chain, we find that they also hold for quantum walks.

In the second part of this thesis we study to what extent quantum walks can
simulate classical walks. Crucially, we will be interested in creating a quantum
superposition that encodes the classical walk probability distribution, rather than
sampling from the classical distribution itself. We will refer to this task as quantum
simulation of Markov chains. The creation of quantum superpositions is an impor-
tant primitive in the field of quantum computing. It underlies quantum algorithms
for speeding up search problems and machine learning tasks, as well as for testing
properties of the original probability distributions. The problem of quantum simu-
lation was initially tackled in the early work of John Watrous [1], largely initiating
the study of quantumwalks. He constructed a quantumwalk that allows to quantum
simulate a random walk over any given number of steps, using an equal number
of quantum walks steps, and with success probability inversely proportional to the
2-norm of the random walk distribution. As the main technical contribution of this
thesis part we construct a quantum walk algorithm, which we call quantum walk
fast-forwarding (QFF), that quadratically accelerates this scheme. Specifically, this
algorithm builds on quantum walks to quantum simulate the broad class of re-
versible Markov chains, using quadratically less steps, and with the same success
probability asWatrous’ scheme. The reversibility condition, while common, is crit-
ical here, showing most notably that the lifted Markov chain simulators from the
first thesis part cannot be fast-forwarded in this way. Our algorithm builds on the
seminal work by Ambainis [2] and Szegedy [3], following up on Watrous’ scheme,
where they construct quantum walks to speed up specific random walk algorithms
for search problems. The direct speedup of Markov chain dynamics, allowed by
QFF, leads to a number of new quantum algorithms. Most importantly, we show
that QFF allows to straightforwardly accelerate existing random walk algorithms
for graph property testing, an important and topical problem in the field of sublin-
ear algorithms. Specifically, we find a quantum speedup with respect to a range of
recent algorithms for testing graph expansion and clusterability. Related to this, we
discuss how QFF allows to classify nodes into clusters, a relevant problem in the
fields of data science and machine learning. Apart from these results, we discuss
the use of QFF in the context of graph search problems, showing how QFF allows
to escape large sets quadratically faster, and show how QFF can be relevant for
quantum state generation.
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Structure of the Thesis

In the preliminaries, consisting of Chapters 1 and 2, the most important concepts
are introduced. Chapter 1 presents the concept of graphs, randomwalks and mixing
time on graphs, and the randomwalk extension called liftedMarkov chains. Chapter
2 introduces quantum walks, the quantum counterpart of classical walks.

The first thesis part, consisting of Chapters 3 to 6, addresses the problem of
bounding themixing time and simulating quantumwalkswith liftedMarkov chains.
Chapter 3 introduces the concept of conductance bounds onMarkov chains, Chapter
4 demonstrates how lifted Markov chains allow to simulate quantum walks, and
Chapter 5 uses this simulation result to prove conductance bounds on the mixing
time of quantum walks. We discuss these results, and present some open question,
in Chapter 6.

The second thesis part, consisting ofChapters 7 to 10, presents our newalgorithm
called quantumwalk fast-forwarding, and discusses its applications. InChapter 7we
discuss the existing approaches to associating a quantum walk to a given classical
Markov chain, and in Chapter 8 we present the algorithm for quantum walk fast-
forwarding. In Chapter 9 we apply quantum fast-forwarding to the problem of graph
property testing, and finally in Chapter 10 we discuss some more applications and
present an outlook of remaining questions.

In Appendix A of the back matter, we provide an additional result which has
interest of its own, but does not require the techniques presented in the thesis.
We provide a quantum walk algorithm which allows to create superpositions over
graphs in Õ(1/

√
HT) quantum walk steps, with HT the hitting time of the starting

node.
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Samenvatting (Dutch Synopsis)

Deze thesis bestudeert quantum walks op grafen, de quantum tegenhanger van
klassieke walks of Markov ketens op grafen. Het is moeilijk de relevantie van deze
laatste te overschatten in gebieden als computerwetenschappen, fysica, wiskunde,
economie en biologie. Klassieke walks worden succesvol aangewend zowel voor
het beschrijven en bestuderen van bestaande fenomenen, als voor het oplossen
van algoritmische problemen. Met de opkomst van de quantumcomputer, en de
zogenaamde “tweede quantum revolutie”, wordt quantum walks een soortgelijke
rol toegeschreven, zowel voor het beschrijven van bestaande fenomenen als voor
het oplossen van algoritmische problemen. De studie van quantum walks kwam
slechts minder dan twee decennia geleden op, zodat veel interessante vragen en
onderzoeksrichtingen vooralsnog open of onverkend zijn. In deze thesis, specifiek,
beschrijven we de symbiotische relatie tussen quantum walks en Markov ketens of
klassieke walks. In grove lijnen stellen we de vraag of klassieke walks toelaten om
quantum walks te simuleren, en omgekeerd, in welke mate quantum walks toelaten
om klassieke walks na te bootsen. Zo beschrijven we twee zijden van eenzelfde
medaille, één zijde die deels onbegrepen was, en één zijde die deels onverkend was.

In het eerste deel van deze thesis bestuderen we het simuleren van quantum
walks met klassieke walks. Een belangrijke eigenschap van deze laatste is hun
menggedrag op grafen, een kostbare eigenschap die toelaat om efficiënt grote toe-
standsruimten te verkennen en bemonsteren, wat opnieuw relevant is van zowel
een fysisch als een computationeel standpunt. De analyse van het menggedrag van
klassieke walks is een gebied op zichzelf, met een breed spectrum aan technieken
zowel voor het ontwerpen van geschikte walks, als voor het schatten en versnellen
van de mengprestatie. Dit laatste, het versnellen van het menggedrag van klassieke
walks, is een belangrijk aspect waar vermoed wordt dat quantum walks een vo-
ordeel kunnen bieden. Een belangrijk voorbeeld hiervan is de cirkel-graaf. Het is
welbekend dat quantum walks op deze graaf de mengtijd kwadratisch verbeteren
ten opzichte van klassieke walks. Dit was een vroege observatie die aanleiding
gaf tot veel opvolgend onderzoek en interesse in het menggedrag van quantum
walks, leidend naar zowel een groot aantal resultaten als een groot aantal open
vragen. Een van deze open vragen, centraal in dit deel van de thesis, is de pre-
cieze versnelling in menggedrag die quantum walks over klassieke walks kunnen
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hebben. Onze aanpak om dit probleem op te lossen is gemotiveerd door een andere
observatie op de cirkel-graaf: als we een klassieke walk een extra geheugenslot
geven, wat impliciet verondersteld wordt voor de quantum walk, dan kunnen we
eveneens de mengtijd kwadratisch verbeteren, zij het op een puur klassieke manier.
De resulterende klassieke walk, met een extra geheugenslots, wordt een gelifte walk
genoemd. Gedreven door dit voorbeeld stellen we de vraag of deze gelifte walks al-
tijd dezelfde versnelling in menggedrag als quantum walks kunnen verwezenlijken.
Gebruik makende van ideeën uit verborgen variabelen theorieën, tonen we aan dat
voor een brede klasse van quantum walks er inderdaad gelifte walks bestaan die
hun dynamica simuleren, en bijgevolg hetzelfde menggedrag zullen hebben. Een
opvallend gevolg van dit resultaat is dat dit toelaat om limieten op het menggedrag
van quantum walks te bewijzen: Hoe veel tijd heeft een quantum walk nodig om
bepaalde delen van een graaf te bereiken? Kan het dit sneller doen dan klassieke
walks? Dergelijke vragen zijn uitgebreid bestudeerd voor klassieke walks, leidend
tot het concept van conductantiegrenzen, een elegante en intuïtieve karakterisatie
van de gezochte limieten. De conductantie van een graaf kwantificeert hoe goed
een graaf verbonden is, en conductantiegrenzen relateren deze kwantiteit aan de
snelheid waarmee een klassieke walk doorheen een graaf kan bewegen. Door het
bewijzen van deze conductantiegrenzen voor gelifte walks, die toelaten om quan-
tumwalks te simuleren, bewijzen we dat conductantiegrenzen ook kunnen gebruikt
worden om het menggedrag van quantum walks te begrenzen.

In het tweede deel van deze thesis bestuderen we in welke mate quantum walks
toelaten om klassieke walks te bestuderen. Van cruciaal belang is dat we geïn-
teresseerd zijn in het creëeren van quantum superposities die de klassieke walk
distributie beschrijft, eerder dan het creëren van de klassieke distributie. Deze
taak noemen we het quantum-simuleren van een klassieke walk. Het creëren van
dergelijke quantum superposities is een belangrijke primitieve in het veld van quan-
tumcomputers. Het ligt aan de basis van quantum algoritmes voor taken zoals het
versnellen van zoekproblemen, machinaal leren, en het vergelijken van de originele
probabiliteitsdistributies. Het quantum-simuleren van klassieke walks werd voor
het eerst beschouwd in het vroege werk van John Watrous [1], wat mede aan de
basis lag van de opkomst van quantum walks. Hij beschreef een quantum walk die
quantum-simulatie toelaat van een klassieke walk over een bepaald aantal stappen,
gebruik makende van een gelijk aantal quantum walk stappen, en met een suc-
cesprobabiliteit evenredig met de 2-norm van de klassieke walk distributie. Als
de belangrijkste technische contributie van dit thesisgedeelte beschrijven we een
quantum walk algoritme, dat we quantum walk fast-forwarding (QFF) noemen,
dat dit scheme kwadratisch versneld. Dit algoritme bouwt op quantum walks om
de brede klasse van reversibele klassieke walks te quantum-simuleren, gebruik
makende van kwadratisch minder stappen, en met dezelfde succesprobabiliteit als
het algoritme van Watrous. De beperking op de reversibiliteit van de klassieke
walks is gangbaar maar cruciaal, en toont bijvoorbeeld aan dat het algoritme niet
toelaat om de gelifte walk constructies uit het eerste thesisgedeelte te versnellen.
Het algoritme vertrekt van het belangrijke werk van Ambainis [4] en Szegedy [3],
voortbouwend op het werk van Watrous, waarin ze quantum walks beschrijven die
toelaten om bepaalde klassieke walk algoritmes voor zoekproblemen te versnellen.
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De directe versnelling van de klassieke walk dynamica, bekomen via ons QFF
algoritme, leidt naar een aantal nieuwe quantum algoritmes. Allereerst tonen we
aan dat QFF toelaat om op directe wijze bestaande algoritmes voor het testen van
graafeigenschappen te versnellen, een belangrijk en actueel probleem in het gebied
van sublineaire algoritmes. Specifiek tonen we een quantumversnelling aan over de
bestaande algoritmes voor het testen van de conductantie en clusterstructuur van
de graaf. Hieraan gerelateerd beschrijven we hoe QFF toelaat om nodes te klas-
sificeren in clusters, een relevant probleem binnen de datawetenschappen en het
machinaal leren. Naast deze resultaten beschrijven we het gebruik van QFF voor
zoekproblemen op grafen, waarbij we aantonen hoe QFF toelaat om kwadratisch
sneller te ontsnappen uit grote verzamelingen in een graaf, en we bespreken de
relevantie van QFF voor het creëren van quantum toestanden.
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Structuur van de thesis

In de inleiding, bestaande uit Hoofdstukken 1 en 2,worden de belangrijke concepten
geïntroduceerd. Hoofdstuk 1 bespreekt grafen, klassieke walks en mengtijden op
grafen, en de extensie van klassieke walks genaamd gelifte Markov ketens. Hoofd-
stuk 2 introduceert quantum walks, de quantum tegenhanger van klassieke walks.

Het eerste gedeelte van de thesis, bestaande uit Hoofdstukken 3 tot 6, behandelt
het probleem van het begrenzen van de mengtijd en het simuleren van quantum
walks met gelifte Markov ketens. Hoofdstuk 3 introduceert het concept van con-
ductantie grenzen opMarkov ketens, Hoofdstuk 4 demonstreert hoe gelifte Markov
ketens toestaan om quantum walks te simuleren, en Hoofdstuk 5 gebruikt dit re-
sultaat om snelheidsgrenzen te bewijzen op de mengtijd van quantum walks. We
bespreken deze resultaten en enkele open vragen in Hoofdstuk 6.

Het tweede gedeelte van de thesis, bestaande uit Hoofdstukken 7 tot 10, intro-
duceert een nieuw algoritme om quantum walks vooruit te spoelen, en bespreekt
toepassingen hiervan. Hoofdstuk 7 bespreekt de bestaande aanpakken om een quan-
tum walk te associëren aan een gegeven Markov keten, en in Hoofdstuk 8 wordt
hiervan gebruik gemaakt om het nieuwe algoritme te introduceren. Hoofdstuk 9
past dit algoritme toe op het testen van graafeigenschappen, en in Hoofdstuk 10
worden verdere applicaties en enkele open vragen besproken.

In Appendix Awordt een extra resultaat besproken, dat echter niet direct gebruik
maakt van de technieken gepresenteerd in de thesis, maar desalniettemin relevant
is. Er wordt een quantum walk algoritme beschreven om een superpositie over de
nodes van een graaf te creëren in Õ(1/

√
HT) quantum walk stappen, met HT de

raaktijd van de beginnode.
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Asymptotic Notation. We will use asymptotic notation to capture the asymptotic
scaling of certain quantities. For f and g functions on the natural numbers these
are defined as below.

• f (n) ∈ o(g(n)), or “ f is asymptotically dominated by g”, if for every k > 0
there exists n0 such that for all n ≥ n0 it holds that f (n) < kg(n).

• f (n) ∈ O(g(n)), or “ f is upper bounded asymptotically by g”, if there exist
constants c and n0 such that for all n ≥ n0 it holds that f (n) ≤ cg(n).

• f (n) ∈ Θ(g(n)), or “ f is of the same order as g”, if f (n) ∈ O(g(n)) and
g(n) ∈ O( f (n)).

• f (n) ∈ Ω(g(n)), or “ f is lower bounded asymptotically by g”, if g(n) ∈ O( f (n)).
• f (n) ∈ ω(g(n)), or “ f asymptotically dominates g”, if g(n) ∈ o( f (n)).
• The tilde-notation õ, Õ, Θ̃, Ω̃, ω̃ denotes the same relation as above, up to poly-
nomials in log(n). E.g., f (n) ∈ õ(g(n)) if and only if f (n) ∈ o(g(n) polylog(n)).

Norms. For v ∈ CN we use the following norms:

‖v‖ =
√∑
|v( j)|2 2-norm

‖v‖1 =
∑
|v( j)| 1-norm

‖v‖TV =
1
2 ‖v‖1 total variation distance

‖v‖∞ = max |v( j)| infinity norm

11



12 Glossary

Symbols and Acronyms.

⊗ tensor product
ei i-th basis vector

sup support
Tt t-th Chebyshev polynomial

Graphs
G graph

G[S] subgraph induced by a subset S ⊆ V
V node set
N number of nodes N = |V|
E edge set ⊆ V ×V

E(S,T) edge set from S to T
Sc complement of a subset S ⊆ V: Sc = V\S

∂S nodes in S that have an edge to Sc

P(·) probability of the event “·”
d( j) degree of node j
dtot total degree of a graph

V̂, Ê, P̂, . . . lifted versions ofV, E, P, . . .
Φ(S) conductance of the subset S ⊆ V
Φ(P) conductance of the Markov chain P
ΦG,π graph conductance

PN N-node path
ZN N-node cycle
KN N-node complete graph

KN − KN dumbbell graph
T2,k complete binary tree of depth k

Markov chains
MC Markov chain

P Markov chain
P(i, j) transition probability from j to i

Q ergodic flow
P ∼ G P is local with respect to graph G

D discriminant matrix
π stationary probability distribution

τ(ε) ε-mixing time
τ mixing time or (1/4)-mixing time
δ spectral gap

PV Markov chain induced onV
Ps interpolated Markov chain
πs stationary distribution of Ps

HTj hitting time from π to j
Γ stochastic map
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Sg internal nodes of S
QuantumWalks

|ψ〉 ket (quantum state)
〈ψ | bra (linear functional)

|w〉,w ∈ CN quantum state described by w/‖w‖

H Hilbert space
QW quantum walk

tr trace operator
ρ density operator

Π projector
Rψ reflector around |ψ〉

QFF quantum fast-forwarding





Preliminaries



This thesis revolves around both classical and quantum dynamics on graphs.
In the coming preliminaries part we will introduce elementary concepts such as
random walks, Markov chains and quantum walks that describe these dynamics.
All of these concepts arise very naturally in a broad range of settings, from physics
and computer science to engineering and the social sciences.

In Chapter 1 we define graphs as the abstract structures used to describe dis-
tributed network structures and logical state spaces. We introduce random walks
and Markov chains, both as a description of stochastic dynamics on these graphs
and as an algorithmic means to explore a graph structure. We also introduce one of
the central themes of this thesis: mixing on graphs. Under quite general conditions,
the dynamics on a graph settle down or converge to some limit behavior, a process
which we call mixing. The rate at which this happens is a crucial parameter of the
corresponding system or algorithm

In Chapter 2 we introduce the generalizing theory of quantum mechanics, de-
scribing the evolution and measurement of quantum states over graphs. We show
how quantum walks can describe general quantum dynamics over graphs, and their
relation to classicalMarkov chains. Finally we discuss themixing of quantumwalks
and introduce quantum mixing schemes, allowing the comparison of quantum and
classical approaches for mixing.



Chapter 1
Graphs and Walks

To a man with a hammer, anything looks like a nail. To a researcher working on
graphs and random walks, a similar destiny befalls. Indeed, the broad applicability
of these concepts has long and firmly established their central role and ubiquity in
fields such as physics, biology, social sciences, and computer science. The coming
chapter serves as a primer for graphs and random walks, and more general Markov
chains and lifted Markov chains.

1.1 Graphs and Their Vector Space

The stage of this thesis is built from graphs. These are abstract mathematical entities
that describe a notion of discrete space. This space can correspond to a physically
distributed network or maze, such as a city map. Equally often it corresponds to a
logical state space, describing for example the states of a combination lock.

To define a graph G, we start from a finite set of nodes V representing the
state space, and we specify a set of edges E ⊆ V × V. We write G = (V, E).
Throughout the thesis we will restrict our attention to undirected graphs, for which
(i, j) ∈ E if and only if ( j, i) ∈ E. One can think of the nodes as the positions on
a map or the numbers on a lock, and the edges as streets on the map or turns of
the lock. If (i, j) ∈ E then we call the transition from node i to node j allowed,
and we call j a neighbor of i. We denote this by j ∼ i. The degree d(i) of a
node i equals the number of neighbors of i. The boundary ∂S of a subset of the
nodes S ⊂ V is defined as all the nodes in S that have an edge going to Sc:
∂S = { j ∈ S : ∃i ∈ Sc s.t. ( j, i) ∈ E}.

A graph G is connected if for all i, j ∈ V there exists a path from node i to node
j. Here a path from i to j is an ordered set of nodes [i0, i1, . . . , ir ], with (il, il+1) ∈ E
for all 0 ≤ l < r , such that i0 = i and ir = j. The length of this path is r . The
distance from i to j equals the minimum length of a path from i to j, and the
diameter of the graph G is given by the maximum distance between any two nodes.
G is called undirected if (i, j) ∈ E implies that ( j, i) ∈ E. In this thesis we will only
consider connected and undirected graphs.

17
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Fig. 1.1 Connected, undirected graph with diameter 3, attained between for instance nodes k and j.

We will associate an inner product space RV to G, isomorphic to R |V | , by
identifying with each node i a basis vector ei , so that

RV = spanR{ei | i ∈ V}.

For v =
∑
v(i)ei and w =

∑
w(i)ei , the standard inner product is defined as

〈v,w〉 = v†w =
∑
i∈V

v(i)w(i),

where v† denotes the dual vector of w. This inner product naturally induces the
norm ‖v‖ =

√
〈v, v〉.

1.2 RandomWalks and Markov Chains

As one of the main characters acting on these graphs, we can think about an agent or
walker that moves from node to node. Similarly we can think about a configuration
that is changing, like when randomly trying the combinations of a lock. This results
in a stochastic process over the state space V, which is described by a chain of
random variables

{Xt }t∈N = {X0, X1, X2, . . . },

where the subscript represents a time index. We can describe the probability dis-
tribution of the random variable Xt ∈ V by a probability vector vt ∈ RV defined
by

vt ( j) = P(Xt = j),

where P(Y ) represents the probability of event Y . A random walk is a stochastic
process described by the following rule:

If current state is i, pick a uniformly random neighbor j ∼ i and move there.

This generates a chain {Xt } where

P(Xt+1 = j | (Xt, . . . , X0) = (it, . . . , i0))

= P(Xt+1 = j | Xt = it ) =

{
1/d(it ) if j ∼ it
0 otherwise,
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where P(Y |Z) denotes the probability of event Y conditioned on event Z . The state
of a random walk Xt at time t is distributed according to the probability vector
vt . Given vt , we can calculate vt+1 by using the transition matrix P of the random
walk. This matrix is defined by the random walk transition rule, setting

P( j, i) = P(Xt+1 = j | Xt = i),

which is independent of t. A transition matrix is necessarily stochastic, i.e., it is
elementwise nonnegative and every column sums to 1. We can now easily calculate
vt+1 from vt by noting that

vt+1 = Pvt,

for all t ≥ 0. As a direct consequence it holds that vt = Ptv0, and so the probability
of being in node j after t steps, starting from node i, is given by

P(Xt = j | X0 = i) = Pt ( j, i).

Example 1 (Random Walk on ZN ). As an example, consider a random walk on the
N-cycle graph G = (V, E), so that

V = {0, 1, . . . , N − 1} and E = {(i, i ± 1), i ∈ ZN },

where all additions in this example are modulo N . If Xt = i, so the random walk at
time t is at position i, then it hops left or right with equal probability:

P(Xt+1 = i ± 1 | Xt = i) =
1
2
= P(i ± 1, i),

and P is zero elsewhere. This defines the transition matrix, illustrated on the left in
Figure 1.2. Alternatively, let P↑ and P↓ correspond to the clockwise, respectively,
anti-clockwise shift operators, so that P↑ei = ei+1 and P↓ei = ei−1. Then P =
P↑+P↓

2 . This randomwalk is a model for classical diffusion dynamics. If N � t � 1
then the distribution vt of Xt will approximate a binomial distribution, centered
around the origin with standard deviation in Θ(

√
t). On the right in Figure 1.2 we

plot the probability distribution vt = Pte0 of the random walk after t = 100 steps,
starting from the origin. 4

−20 0 20

vt = Pte0

Fig. 1.2 (left) Random walk on the cycle ZN . (right) Plot showing the distribution vt = Pt e0 of
Xt , the random walk starting at the origin, for t = 100. The distribution approaches a Gaussian with
standard deviation Θ(

√
t).
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Example 2 (Random Walk on ZN2 ). As another example, we consider a random
walk on the hypercube ZN2 . In this case we can describe

V = {+1,−1}N and E = {(v, v′) : v, v′ ∈ V, ‖v − v′‖1 = 2},

so that an edge exists between v and v′ if and only if they differ in exactly one of
the N coordinates. As a consequence, any node v has exactly N neighbors, each of
which is described by flipping a single coordinate. A random walk on ZN2 will then
uniformly at random flip a single coordinate.

A realistic situation where such a graph arises is the one-dimensional Ising
model, consisting of N spins or magnets on a line, each of which is either oriented
up (+1) or down (−1). A single configuration then corresponds to an element in
V = {+1,−1}N . A random walk on this configuration graph describes a model
where at each time step a single uniformly random spin is flipped. 4

By the definition of a random walk, we also have that

P(Xt+1 = j | {X0, . . . ,Xt } = {i0, . . . , it })

= P(Xt+1 = j | Xt = it ) = P( j, it ),

for some stochastic matrix P. That is, the transition at time t only depends on the
current state Xt . A Markov chain is defined as a more general stochastic process
that obeys this condition, yet the precise transition probabilities P( j, i) can be more
complicated then for a random walk. As a consequence, a Markov chain {Xt }t∈N
is fully characterized by a transition matrix P, and an initial state X0 = i0 or a
distribution v0 of X0. Often we will omit a description of the initial state, simply
referring to the transition matrix P as a Markov chain.

A general Markov chain associated to a graph G should not be restricted to the
simple random walk transition rule, hopping to a uniformly random neighbor at
any time. It is common that transitions to certain neighbors are more attractive or
more likely than others. The transition probabilities in P can in principle be chosen
freely, up to the fact that P has to be a stochastic matrix, and that certain transition
are forbidden:

P( j, i) = 0 if (i, j) < E .

If P is stochastic and it obeys this condition then we write P ∼ G. The following
properties will be relevant:

• A Markov chain is irreducible if

∀i, j ∈ V, ∃t ≥ 0 : Pt ( j, i) > 0,

so that there is a nonzero probability of reaching node j after t steps, starting
from node i.

• A Markov chain is aperiodic if

∀i ∈ V : gcd{m > 0 | Pm(i, i) > 0} = 1,

where gcd denotes the greatest common divisor.
• A Markov chain is ergodic if it is irreducible and aperiodic.
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As an example, the random walk on the cycle ZN is always irreducible, yet it is
aperiodic if and only if N is odd. A distribution π is a stationary distribution of P
if Pπ = π. As a consequence, if the initial state is distributed according to π, so
v0 = π, then Xt is also distributed according to π:

vt = Ptπ = π.

Given a graph G, it follows by inspection that the stationary distribution π of the
random walk is defined by

π( j) =
d( j)
dtot

, where dtot =
∑
j∈V

d( j). (1.1)

The following theorem is called the fundamental theorem of Markov chains, a proof
of which can be found in for instance [5].

Theorem 1 (Fundamental Theorem). If a Markov chain P is irreducible then it
has a unique stationary distribution π, and π > 0 elementwise. If P is ergodic then
for any distribution v it holds that limt→∞ Ptv = π.

The following corollary will prove useful.

Corollary 1. (i) The eigenvalues of a Markov chain P lie in or on the unit circle.
(ii) An ergodic Markov chain P has a unique eigenvalue λ with |λ | = 1.

Proof. (i) With any eigenvalue λ corresponds a left eigenvector f , such that f P =
λ f . Since P is stochastic, f P represents a stochastic combination of the elements
of f , and thus max |( f P)( j)| ≤ max | f ( j)|. Since f P = λ f , this implies that
max |( f P)( j)| = |λ |max | f ( j)| ≤ max | f ( j)|, and hence |λ | ≤ 1.
(ii) Follows from the fundamental theorem, with the corresponding eigenvector
being the unique stationary distribution. ut

Markov chains arising in practice are often reversible. This means that the “time-
reversed” dynamics in the stationary regime are equal to the original dynamics.
For an irreducible Markov chain P, starting from its stationary distribution v0 = π,
this means that any path {i0, i1, . . . , it } has the same probability as its time-reversed
path {it, it−1, . . . , i0}:

P({X0, X1, . . . , Xt } = {i0, i1, . . . , it } | v0 = π)

= P({X0, X1, . . . , Xt } = {it, it−1, . . . , i0} | v0 = π).
(1.2)

By direct inspection, an irreducible Markov chain P is reversible if and only if a
condition called detailed balance holds, stating that the probability flow from any
node i to any node j in the stationary regime equals the probability flow from node
j to node i. We call this stationary flow from i to j the ergodic flows Q(i, j), defined
as Q(i, j) = P( j, i)π(i). The detailed balance condition hence becomes

Q(i, j) = Q( j, i).

If P is symmetric, then π is the uniform distribution, and P is always reversible.
A nice consequence of reversibility is that P has real eigenvalues. To see this,

we define the symmetric discriminant matrix
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D =
√

P ◦ PT , (1.3)

where “√” and “◦” denote the elementwise square root and product, respectively.
If P is irreducible and reversible, then

D(i, j) =
√

P(i, j)P( j, i) =
√
π(i)−1P(i, j)

√
π( j).

Therefore D = diag(
√
π)−1P diag(

√
π), so that the matrices P and D are similar

and thus share the same eigenvalues. Since D is symmetric, these eigenvalues are
necessarily real, and by the above corollary they lie in the interval [−1, 1].

Example 3 (Metropolis Algorithm). An interesting demonstration and motivation
of the above concepts is the Metropolis algorithm, originally described in 1953 in
[6]. Here we are given a graph G = (V, E) and we wish to sample an element of
V according to some probability distribution π. The Metropolis algorithm allows
to do so in situations where we cannot explicitly calculate π, yet we have access to
the relative probabilities π(v)/π(v′) for (v, v′) ∈ E.

A typical situation where this arises is in statistical physics, where we wish to
calculate the expected value of an observable over some large statistical ensemble
such as a Gibbs state. As a concrete illustration we retake the one-dimensional
Ising model, introduced in Example 2, where V = {+1,−1}N represents the
set of configurations of a system of N spins. The Ising model associates to any
configuration v ∈ V an energy E(v) = −

∑N−1
i=1 vivi+1, where vi denotes the spin

orientation of the i-th spin. This energy is minimized when all spins are equally
oriented +1 or −1, in analogy to a line of magnets which are all oriented to the
same side. The Gibbs distribution π over this ensemble is defined by

π(v) =
e−E(v)∑
v e−E(v)

,

associating a higher weight to states with a lower energy. Now assume that we wish
to calculate the expected energy Eπ(E) =

∑
π(v)E(v) over this ensemble. With

respect to N , which we typically want to choose large, this sum has exponentially
many terms, making it computationally infeasible to exactly evaluate it. A classic
approach is then to use a Monte Carlo approach for approximating the expectation,
randomly sampling elements from π and using these samples to construct an
estimate ofEπ(E). Standardmethods for sampling from π, such as inverse transform
sampling or rejection sampling, require that we can explicitly calculate π(v) for
any v. However, from the form of π(v) we see that this again requires to evaluate
an exponentially large sum, being

∑
v e−E(v) in this case (this is called the partition

function). The enterprise is saved by noting that one thing that we can do, is to
evaluate the relative probabilities π(v)/π(v′) = e−E(v)/e−E(v

′), which only require
to calculate the sum expressions for E(v) and E(v′), which is linear in N . The
Metropolis algorithm shows that it is effectively possible to sample from π using
only these relative probabilities.

The algorithm builds on a Markov chain that implements the following rule on
a general graph G = (V, E) (which in the case of the Ising model would typically
be the hypercube ZN2 ):

If the current state is i, pick a random neighbor j ∼ i.
With probability min

(
1, π(j)d(i)
π(i)d(j)

)
move to j, otherwise stay at i.
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This transition rule corresponds to a Markov chain P, reminiscent of a random
walk, defined by

P( j, i) =


1

d(i) min
(
1, π(j)d(i)π(i)d(j)

)
if j ∼ i,

1 −
∑

j∼i
1

d(i) min
(
1, π(j)d(i)π(i)d(j)

)
if j = i,

0 otherwise.

The Markov chain moves to a random neighbor (“accepting” the move) with a
probability min

(
1, π(j)d(i)π(i)d(j)

)
, otherwise staying at the original node (“rejecting” the

move). Hence the step is always accepted if π( j)d(i) ≥ π(i)d( j), yet if π( j)d(i) <
π(i)d( j) it is rejected with probability π( j)d(i)/π(i)d( j). On a regular graph, we
see that this Markov chain decreases the probability of moving to a neighbor with
lower weight, and the chain will have a higher probability of being in states with a
higher weight.

By direct inspection we see that Pπ = π. If in addition π > 0 and the original
random walk is ergodic, then P will be ergodic so that

lim
t→∞

Ptv = π.

We see that, starting from an arbitrary state or distribution, the Markov chain
converges to our goal distribution π, eventually returning a sample distributed
according to π. This algorithm is a special case of an approach called Markov
Chain Monte Carlo (MCMC), where Markov chains are used as a way to sample
elements.

Another interesting application of the Metropolis algorithm is when we wish to
sample a uniformly random element from the nodes of a graph. Running a random
walk until it reaches its stationary distribution (1.1) is a straightforward strategy,
yet in general this stationary distribution will not be uniform. As a remedy we can
use the Metropolis algorithm, setting π equal to the uniform distribution, to adapt
the random walk into a Markov chain whose limiting distribution is uniform. 4

1.3 Mixing Time

From the fundamental theorem of Markov chains we know that an ergodic Markov
chain P will converge to some stationary distribution π. We call this mixing of the
Markov chain. Mixing is central to MCMC algorithms, where we wish to sample
from the limit distribution π. Themixing time quantifies the time it takes theMarkov
chain to get close to π, which is a critical aspect of MCMC algorithms.

Formally, consider an ergodic Markov chain P over a graph G = (V, E) with
stationary distribution π. Then the ε-mixing time τ(ε) of P is defined as the smallest
time step such that the Markov chain remains ε-close to π, starting from the worst
initial state:

τ(ε) = min{T | max
v
‖Ptv − π‖TV ≤ ε, ∀t ≥ T}.

Here the maximization runs over all distributions over V and ‖ · ‖TV denotes the
total variation (TV) distance, defined as half of the 1-norm ‖ · ‖TV =

1
2 ‖ · ‖1. It is
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natural to use the TV distance as a measure of convergence between probability
distribution, since this norm has an operational interpretation: if p and q are
probability distributions, then

‖p − q‖TV = max
S⊂V
|p(S) − q(S)|.

In words, ‖p − q‖TV equals the maximum difference between the probability asso-
ciated to a subset or event S by p and the probability associated to S by q. We note
that the maximization in the definition of τ(ε) can in fact be restricted to initial
states of the form v = ej . This can easily be seen from the following inequality:

‖Ptv − π‖TV =
∑

j

v( j)
(
Ptej − π

) 
TV

≤
∑
j

v( j)‖Ptej − π‖TV ≤ max
j
‖Ptej − π‖TV,

where the first inequality follows from applying the triangle inequality on the TV
distance. This implies that maxv ‖Ptv − π‖TV = maxj ‖Ptej − π‖TV.

We are generally interested in the mixing time for asymptotically small ε , yet it
is not a priori clear that we can find good estimates on τ(ε) for all ε . The following
lemma shows that for this purpose it suffices to have an upper bound on τ(ε0) for
some fixed ε0 < 1/2. It is often called the amplification lemma because it shows
how iterating Pτ(ε0) amplifies the closeness to π.

Lemma 1 (Amplification lemma). Consider an ergodic Markov chain P that
mixes to π. For any ε0 < 1/2 it holds that

τ(ε) ≤ τ(ε0) ·

⌈
log 1

ε

log 1
2ε0

⌉
, ∀ε > 0.

Proof. Let T = τ(ε0). First we will assume that t = kT , k ∈ N. We can bound

max
v
‖PkT v − π‖TV ≤ max

v,w
‖PkT v − PkTw‖TV.

This is an easy consequence of the fact that w is maximized over a set containing
π, and PkT π = π. We can now use a property called submultiplicativity of the total
variation distance under application of a stochastic matrix A, see Lemma 2. Setting
A = PT this implies that

max
v,w
‖PkT v − PkTw‖TV ≤

(
max
v,w
‖PT v − PTw‖TV

)k
.

From the triangle inequality we know that

max
v,w
‖PT v − PTw‖TV ≤ 2 max

v
‖PT v − π‖TV ≤ 2ε0,

since we defined T = τ(ε0). As a consequence we find that

max
v
‖PkT v − π‖TV ≤ max

v,w
‖PkT v − PkTw‖TV ≤ (2ε0)

k ≤ ε,

if k ≥ log(1/ε)/log(1/(2ε0)). This proves the statement for t = kT .
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Now if t = t ′ + kT for some t ′ ∈ (0,T), we use the fact that the TV distance is
nonincreasing under multiplication with a stochastic matrix: ‖Pw‖TV ≤ ‖w‖TV for
any vector w. To see this, let w = w>0 +w<0, where w>0 and w<0 hold the positive
and negative part respectively of w. Then ‖w‖TV = ‖w>0‖TV + ‖w<0‖TV, and so

‖Pw‖TV ≤ ‖Pw>0‖TV + ‖Pw<0‖TV

= ‖w>0‖TV + ‖w<0‖TV = ‖w‖TV,

where we used the fact that ‖Pw>0‖TV = ‖w>0‖TV, and similarly for w<0, which is
a consequence of the stochasticity of P.

From this property of the TV distance we see that for all v it holds that

‖Ptv − π‖TV = ‖Pt′PkT v − π‖TV

= ‖Pt′(PkT v − π)‖TV ≤ ‖PkT v − π‖TV,

where we also used the fact that Pt′π = π. So finally we find that, for arbitrary
t ≥ 0,

max
v
‖Pt [v] − π‖TV ≤ max

v
‖P bt/T c ·T [v] − π‖TV ≤ ε,

if bt/Tc ≥ log(1/ε)/log(1/(2ε0)), or equivalently

t ≥ T · dlog(1/ε)/log(1/(2ε0))e

= τ(ε0) · dlog(1/ε)/log(1/(2ε0))e . ut

Lemma 2. Let A be a stochastic matrix and define dA(t) = maxv,w ‖Atv−Atw‖TV,
where the maximization is over probability vectors v and w. Then dA(t) is submul-
tiplicative:

dA(t + s) ≤ dA(t)dA(s).

In particular, dA(t) ≤ dA(1)t .

Proof. See [5, Lemma 4.12]. ut

Setting ε0 = 1/4, the amplification lemma implies that

τ(ε) ≤ τ(1/4)dlog(1/ε)e . (1.4)

Asymptotically it also holds that

τ(ε) ∈ Ω

(
τ(1/4)

log(1/min π( j))
log(1/ε)

)
,

which can be calculated from the below Proposition 1. As a consequence, the bound
(1.4) is asymptotically tight up to a log factor1. This proves that τ(1/4) is a good
quantifier for the ε-mixing time τ(ε). In this thesis, and in line with the existing
mixing literature, we rely on this close correspondence to denote by τ(1/4) the
canonical mixing time τ of the graph:

τ ≡ τ(1/4).

1 So far we have not been able to come up with an example where this extra log factor is necessary.
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We mentioned that reversible Markov chains have a well-behaved spectrum.
Indeed, for these Markov chains we can use the spectrum to bound τ(ε). Thereto
define the spectral gap δ of a reversible, ergodic Markov chain P as the minimum
distance between the unique eigenvalue 1 and any other eigenvalue:

δ = min
λ,1
(1 − |λ |),

where the minimization is over all eigenvalues of P different from 1. The following
proposition is standard, and a proof can be found in [5].

Proposition 1. If P is a reversible, ergodic Markov chain with stationary distribu-
tion π, then (

1
δ
− 1

)
ln

(
1
2ε

)
≤ τ(ε) ≤

1
δ

ln
(

1
ε minj π( j)

)
.

We can use this proposition to estimate the random walk mixing time on ZN .

Example 4 (Mixing time on ZN ). We previously introduced the random walk on
the N-cycle graph, having a characteristic spreading of Θ(

√
t) in t steps. As a

consequence, it will take N2 steps to spread out over the cycle, and one expects a
mixing time in Θ(N2). To prove this, note that the transition matrix P = P↑+P↓

2 is
translationally invariant (P↑PP↓ = P), and is hence diagonal in the Fourier basis

{wk}0≤k<N, where wk( j) = ei
2πk
N j .

Indeed, it is straightforward to verify that Pwk = cos
(

2πk
N

)
wk = λkwk .

If N is even, then the random walk is not ergodic since it is periodic, and it will
not mix. Indeed, in this case P has an eigenvalue λN/2 = −1 and so the spectral
gap δ = 0. If N is odd, then λ dN/2e = cos

(
π + π

N

)
is the eigenvalue with the largest

modulus different from 1. The spectral gap is therefore given by

δ = 1 −
���cos

(
π +

π

N

)��� = π2

2N2 +O
(

1
N4

)
.

By Proposition 1 this predicts a lower bound on the mixing time τ ∈ Ω(N2). The
upper bound gives τ ∈ O(N2 log N). More advanced methods (see again [5]) allow
to lose this extra log-factor, finally yielding the mixing time τ ∈ Θ(N2), as we
anticipated. 4

1.4 Lifted Markov Chains

The random walk on ZN has a mixing time in Θ(N2), which is unsatisfactory since
it is quadratically larger than the diameter dN/2e. Gerencsér [7] showed that in
fact any Markov chain on ZN that mixes to the uniform distribution has a mixing
time in Ω(N2). Motivated by this, Diaconis, Holmes and Neal [8] proposed to lift
the state space V = ZN , adding auxiliary states to the walker, with the goal of
accelerating its mixing time. The resulting lifted Markov chains were introduced
more formally by Chen, Lovász and Pak in [9].



1.4 Lifted Markov Chains 27

Consider an ergodic Markov chain P over some graph G = (V, E) with sta-
tionary distribution π. A graph Ĝ = (V̂, Ê), together with a many-to-one function
f : V̂ → V, is called a lifting of G if and only if

( f (i), f ( j)) < E ⇒ (i, j) < Ê .

So the lifting associates a set of “child nodes” f −1(i) ⊂ V̂ to a “parent node” i ∈ V,
and there is an edge between child nodes only if there is an edge between the parent
nodes. We define an initialization map as a one-to-one function F : V → V̂ for
which ( f ◦ F)(i) = i, i.e., it associates a unique child node with every parent node.
A general lifted Markov chain (LMC) on a lifted graph Ĝ is then described by a
Markov chain P̂ over Ĝ, together with an initialization map F. We are generally
interested in the marginal distribution of P̂t ◦ F on the original node setV, where
now “◦” denotes composition. Starting from some distribution v over V, this
marginal is naturally defined by

( f ◦ P̂t ◦ F)[v]. (1.5)

Here we intuitively extended f and F to maps between probability distributions:
f [v] for v ∈ RV̂ is defined by f [v]( j) = v( f −1( j)), and F[v] for v ∈ RV is
defined by F[v]( j) = v(i) if j = F(i) for some i ∈ V and zero elsewhere. We call
the combined scheme ( f ◦ P̂t ◦ F) a classical mixing scheme, mapping an“input”
probability distribution overV to an “output” distribution overV, and we say that
a scheme mixes to π if and only if for all distributions v overV it holds that

lim
t→∞
( f ◦ P̂t ◦ F)[v] = π.

The above condition thus demands that the lifted Markov chain is such that,
after initialization F, its marginal converges to π. Note that an LMC can mix to
a unique stationary distribution even when the lifted transition matrix P̂ is not
ergodic, contrary to the case for simple Markov chains. The ε-mixing time τ(ε) of
an LMC is defined similarly to simple Markov chains:

τ(ε) = min{T | max
v
‖( f ◦ P̂t ◦ F)[v] − π‖TV ≤ ε, ∀t ≥ T}.

We now discuss the original LMC construction on the cycle, described in [8].

Example 5 (LMC on ZN ). In [8], an LMC was proposed with the aim of speeding
up the unsatisfactory random walk mixing time on the cycle. They propose the
following transition rule, for some 1 ≥ α ≥ 0 (again all operations are modulo N):

If current state is i, and former state i − 1, “go forward” to i + 1 with probability
1 − α and otherwise “go back” to i − 1.
If current state is i, and former state i+1, “go forward” to i−1 with probability 1−α
and otherwise “go back” to i + 1.

For α = 0 this is the trivial non-backtracking random walk on the cycle, which
moves fast around the cycle, yet it is N-periodic and hence never mixes to its
stationary distribution. For 1 � α > 0, the Markov chain keeps moving in the
same direction with a high probability, moving fast around the cycle, yet it stays
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ergodic. This transition rule can be implemented using a simple LMC. Thereto
define the lifted graph Ĝ = (V̂, Ê) by

V̂ = C ×V = {↑, ↓} × {0, 1, . . . , N − 1},

with “×” the Cartesian product, and the marginalization function by f (↑, i) = f (↓
, i) = i for all i ∈ V. Furthermore, Ê contains all edges between C × {i} and
C × {i ± 1} for all i ∈ V. So apart from a position, the walker now also has a coin
with sides ↑ and ↓. The following LMC P̂ on Ĝ implements their strategy:

P̂ = S · (C ⊗ I), C =
[
1 − α α
α 1 − α

]
, (1.6)

where “⊗” represents the tensor product and S = e↑e
†

↑
⊗ P↑ + e↓e

†

↓
⊗ P↓ is the

conditional shift operator. Intuitively, this LMC implements the following two
steps:

1. coin toss C ⊗ I: keep the walkers’ coin ↑ or ↓ with probability 1 − α, and
otherwise flips it,

2. shift S: if the coin state is ↑, move to the right, if it is ↓, move to the left.

The initialization map F can be chosen arbitrarily, e.g., F(i) = (↑, i). It is easy
to check that P̂ is ergodic, and mixes to the uniform distribution over V̂. After
marginalization this corresponds to the uniform distribution π over V, so that
indeed the LMC mixes to π. In [8] they continue to show that if α = 1/N , so the
LMC keeps moving in the same direction for an expected number of steps N , then
P̂ mixes in Θ(N) steps. As a consequence, the LMC quadratically accelerates the
mixing time of any simple Markov chain.

In more recent work by Diaconis and Miclo [10] this construction is generalized
to accelerate random walks on Cayley graphs of Abelian groups. They conjecture
that this leads to a similar quadratic speedup. 4

Fig. 1.3 LiftedMarkov chain onZN as proposed in [8], withα = 1/N . The LMChas a large probability
1 − α of continuing in the same direction, e.g., (↑, i) → (↑, i + 1) → (↑, i + 2) → . . . , at every step
switching only with a small probability α. This scheme remedies the diffusive behavior of the random
walk on ZN , mixing to the uniform distribution inO(N ) steps.

Chen, Lovász and Pak [9] furthermore showed that the LMC speedup on the
cycle is not an isolated case, proving the below theorem. The statement involves
the quantity Φ(P), called the conductance of the Markov chain P, which we will
introduce later. For the cycle ZN , Φ(P) ∈ O(1/N).
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Theorem 2 ([9]). For any graph G and Markov chain P ∼ G that mixes to some
distribution π, there exists an LMC P̂ ∼ G that mixes to π with a mixing time

τ ∈ O
(

1
Φ(P)

log
1

minj π( j)

)
.

They actually provide an explicit construction for this LMC. It is however
practically infeasible as it requires to solve complicated multicommodity flow
problems over the graph, and the local coin size is Ω(|V|).

We finallymention that we deviate in our definitions from the original definitions
in [9] and [8], in which LMCs are defined without the initialization and marginal-
ization maps F and f . Dropping F, they take into account all possible initial states
v ∈ RV̂ , rather than the initialized subset F[v] ⊂ RV̂ as we do. Dropping f , they
require that an LMC converges on the entire lifted state space, whereas we only
demand that the distribution of interest, being the marginal distribution, converges.
A pragmatic motivation for our deviation is that F and f allow to describe LMCs as
a mapping between distributions on the original node setV, as we do in (1.5). This
will allow us to straightforwardly compare different mixing schemes overV (e.g.,
casting them as stochastic processes, Section 4.1), all of which are maps over V.
Our results however carry over to the original framework, and can even strengthen
certain results. We discuss this very thoroughly in [11]. Here is some overview:

• Lower bounds on LMC mixing time. We prove lower bounds on the mixing
time of LMCs with initialization and marginalization maps. These maps form
relaxations of LMC mixing without these maps: we only maximize the mixing
time over a subset of “good” initializations of V̂, and we only require that the
marginal converges, which by the triangle inequality converges at least as fast
as the original distribution over V̂. Therefore our bounds carry over to the
original setting, and in fact strengthen existing bounds to our relaxed setting.

• Constructions of LMCs with a certain mixing time. Initialization and marginal-
ization maps relax the mixing time definition, so that our constructions do
not directly carry over to similar LMC constructions in the original setting.
However, as we discuss in [11], we can easily adapt LMC constructions with
initialization and marginalization map to LMC constructions without these
maps with the same mixing time.



Chapter 2
Quantum Mechanics and Quantum Walks

In this chapter we introduce our second main character: quantum walks. By look-
ing at nature, scientists found that the classical laws underlying random walks
did not suffice to describe a number of physical phenomena. A more complicated
story did: the theory of quantum mechanics. We will show how principles such as
superposition and measurement profoundly change the rules. Not only did quan-
tum mechanics lead to a better understanding of existing phenomena, its peculiar
features have driven, and in fact are driving, much of our current technologies.

In this thesis we will mainly concern ourselves with a particular derivative of the
theory, called quantumwalks – the quantummechanical analogue of randomwalks.
We already mentioned that random walks are ubiquitous for modeling natural pro-
cesses and are a versatile algorithmic tool to explore and extract information about
networks. Quantum walks are being attributed similar promises. They describe
how the position of a “walking” quantum particle evolves on a graph. The original
continuous time model was introduced by Aharonov, Davidovich and Zagury in
1993 [12], where it served as a physical model for a spin particle on a line under
the influence of a magnetic field. They showed how quantum effects can cause the
particle to behave radically different from a classical random walk, in some cases
spreading out much faster.

The follow-up papers, focusing on the ones that lie closest to our cause, actually
took inspiration from this to investigate quantum walks from an algorithmic point
of view. Farhi and Gutmann [13] andWatrous [1] used quantum walks to show that
quantum computers can simulate random walk algorithms for decision tree and
graph connectivity problems, speeding up the random walk algorithm in certain
cases. Ambainis et al [14] and Aharonov et al [15] defined general quantum walks
on graphs, and they showed how quantum walks can speed up the diffusive mixing
behavior of random walks. Following these results, research on quantum walks
really took off, studying them as a paradigm for quantum computing [16, 17] and
using them to speed up algorithmic search tasks such as the collision problem in
[2], triangle finding in [18], and the problem of finding marked elements on graph
[3, 19–22]. See [23] for a nice survey. Again from a physical point of view, theywere
subsequently associated to improved transport phenomena in biological systems
[24, 25], thermodynamic theories, breakdown models and topological states of
matter [26–29], and they have been simulated in various experiments [30–34].

30
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Despite these impressive advances, many aspects of quantum walks remain
poorly understood, leaving open a lot of important questions. For example, through
a long series of papers [3, 21, 22, 35–37], a general quadratic speedup by quantum
walks was established for the problem of finding a marked node on a graph. Albeit
closer to the original observations on the line [14], the complementary problem
of mixing has resisted such general speedup by quantum walk. There is evidence
for a quadratic speedup on specific, highly symmetric graphs such as the cycle
[15], hypercube [38], and torus [39]. A quadratic speedup was also proven under
certain restrictive conditions: the existence of a slowly-varying sequence ofMarkov
chains [40–43], or if the mixing time equals the hitting time of the graph [44]. It is
conjectured in [45] that a general quadratic speedup is possible.

2.1 Quantum Mechanics

The quantum mechanical framework needed for this thesis is defined by three
concepts: quantum states, their evolution, and their measurement. Quantum states
and their evolution describe the state and dynamics of a quantum system, such as
a molecular system or the inner workings of a quantum computer. We can gain
information about this system by performing a measurement on it.

Quantum States: At any time, the state of a random walk Xt corresponds to a
node of the graph: Xt ∈ V. In quantum mechanics, this condition is relaxed and
a walk can be in a superposition of nodes. Such superposition defines a quantum
state, and can be described by a complex-valued vector

Xt =
∑
j∈V

ψ( j)ej,

with {ej}j∈V a set of orthonormal basis vectors indexed by the graph nodes, and
ψ ∈ C |V | a complex vector of 2-norm equal to 1, i.e., ‖ψ‖ =

∑
j∈V |ψ( j)|2 = 1.

Throughout the thesis we will use the bra-ket notation for quantum states, where
we write a ket |ψ〉 as a shorthand for the quantum state Xt with components ψ.
Letting the ket | j〉 denote the basis vector ej , we can expand the quantum state |ψ〉
as

|ψ〉 =
∑
j∈V

ψ( j)| j〉.

A bra 〈ψ | =
∑
ψ( j) 〈 j | denotes the dual or Hermitian conjugate vector ψ†, with ψ

the complex conjugate of ψ and 〈 j | denoting the Hermitian conjugate of the ket | j〉.
To associate a vector space to these states, we define the inner product

〈
|χ〉, |ψ〉

〉
between the quantum state |χ〉 and |ψ〉 as the standard inner product between the
vectors χ and ψ, i.e.,〈

|χ〉, |ψ〉
〉
= 〈χ, ψ〉 =

∑
j∈V

χ( j)ψ( j) ≡ 〈χ |ψ〉.

The condition that quantum states have norm 1 then becomes 〈ψ |ψ〉 = 1. We
can now define the vector space HV as the vector space spanned by the set of
orthonormal states {| j〉}j∈V , equipped with the above inner product. Throughout
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we assume that this vector space is a Hilbert space, i.e., it is complete in some
precise mathematical sense which we do not detail here.

Randomness in a classical system forces us to describe the state of a randomwalk
Xt ∈ V by a probability distribution v over the states inV. Similarly, randomness in
a quantum system can force us to describe the state of a quantum walk Xt ∈ HV by
a probability distribution v over quantum states inHV . This results in an ensemble
{v(i), |ψi〉}. If the ensemble is trivial ({|ψ〉}), and so the quantum state is simply
|ψ〉, we call it a pure state. If the ensemble is nontrivial, we call it a mixed state.
It turns out that any ensemble can be conveniently represented by the following
operator

ρ =

|V |∑
i=1

v(i)|ψi〉〈ψi |,

which we call a density operator. The set of all density operators that describe such
quantum ensembles corresponds to the set of all Hermitian linear operators ρ over
HV that have trace 1,

tr(ρ) = 1 =
∑
〈 j |ρ| j〉,

and are positive semidefinite,

〈χ |ρ|χ〉 ≥ 0, ∀|χ〉 ∈ HV .
A density operator represents a pure state if and only if it has rank 1. A classi-
cal probability distribution v over V corresponds to the ensemble {v(i), |i〉}i∈V ,
resulting in a density matrix that is diagonal in the node basis {|i〉}i∈V :

ρv =
∑
i∈V

v(i)|i〉〈i |.

Evolution: The evolution of a pure quantum state |ψ〉 7→ |ψ ′〉 is described by a
unitary operator, that is, |ψ ′〉 = U |ψ〉 where U is a linear operator such that

UU† = U†U = I .

Notice that 〈ψ ′ |ψ ′〉 = 〈ψ |U†U |ψ〉 = 〈ψ |ψ〉 = 1, so that indeed the unitary operator
maps quantum states to quantum states. A crucial feature of unitary evolution is
that it is invertible: U† is again a unitary operator and U† |ψ ′〉 = |ψ〉. For further
reference, we remind that a unitary operator U can always be decomposed as

U =
∑
k

eiθk Πk,

where {Πk} is a set of orthogonal projectors (Π2
k
= Πk), and {0 ≤ θk < 2π} is a

set of eigenphases.
Similarly to the case for quantum states, randomness can be involved in the

evolution of a quantum system (and, as we will see below, measurements). Without
going into details, we mention that the generalized evolution, nowmapping density
matrices to density matrices, can always be represented by a Kraus map Ψ:

ρ 7→ ρ′ = Ψ[ρ] =
∑
k

Bk ρB†
k
,



2.1 Quantum Mechanics 33

where theKraus operators {Bk} form a set of linear operators such that
∑

k B†
k
Bk =

I. Indeed, ρ′ is again a density operator:

tr(ρ′) = tr

(∑
k

Bk ρB†
k

)
= tr

(∑
k

B†
k
Bk ρ

)
= tr(ρ) = 1,

using the fact that tr(AB) = tr(BA), and for all |χ〉 it holds that

〈χ |ρ′ |χ〉 =
∑
k

〈χ |Bk ρB†
k
|χ〉 =

∑
k

(〈χk |Bk)ρ(B
†

k
|χk〉) ≥ 0,

using the fact that ρ is positive semidefinite1. Notice that the above unitary evolution
is a special case, mapping an ensemble {v(i), |ψi〉} 7→ {v(i),U |ψi〉}, and so ρ′ =∑
v(i)U |ψi〉〈ψi |U† = UρU†.
An easy example of a Kraus map arises when we randomly apply one of two

possible unitary operators on a quantum state, applying U1 with probability p and
U2 with probability 1 − p. The corresponding Kraus map is then

ρ 7→ ρ′ = Ψ[ρ] = pU1ρU†1 + (1 − p)U2ρU†2 .

This Kraus map can be described by the Kraus operators {B1 =
√

pU1, B2 =√
1 − pU2}, for which indeed B†1 B1 + B†2 B2 = I.
Measurement: Taking a pragmatic viewpoint, quantum states and evolution are

the “under the lid” description of a quantum system. We can probe this system
from the exterior by performing measurements on it. For this thesis we will restrict
ourselves to projective measurements, fully described by a “complete” set of op-
tions or outcomes. Mathematically this corresponds to a set {Πk} of orthogonal
projectors,

Π2
k = Πk, ΠkΠk′ = δk,k′Πk,

that partition the Hilbert spaceHV :∑
k

Πk = I,

or equivalently
⋃

k Im(Πk) = HV with “Im” denoting the image of an operator
(which equals the support in the case of a projector). Now assume that the quantum
system is in a pure state |ψ〉. Performing themeasurement {Πk} returns the outcome
“l”, corresponding to projector Πl , with a probability given by

P(outcome l) = ‖Πl |ψ〉‖
2.

Crucially, the state of the quantum system after the measurement is changed,
reflecting this outcome: following an outcome “l”, the state becomes

|ψ ′〉 =
Πl |ψ〉

‖Πl |ψ〉‖
,

which equals the (renormalized) projection of the initial state onto the image of
Πl . This process is called the “collapse” of the quantum state, randomly projecting

1 In principle, yet of minor importance to this thesis, a stronger condition called complete positivity of the map should
be checked. See for instance [46].
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the quantum state into one of the measurement outcomes. Note that this collapse
implies that if now we repeat the same measurement {Πk} we again find the
outcome “l”, now with probability 1 though, since P(outcome l) = ‖Πl |ψ

′〉‖2 = 1.
By inference, if the quantum state is in a mixed state ρ, corresponding to an

ensemble {v(i), |ψi〉}, this becomes

P(outcome l) =
∑
i

v(i)‖Πl |ψi〉‖
2.

We can rewrite this expression by noting that∑
i

v(i)‖Πl |ψi〉‖
2 =

∑
i

v(i)
∑
j∈V

〈 j |Πl |ψi〉〈ψi |Πl | j〉

=
∑
i

v(i)tr(Πl |ψi〉〈ψi |Πl).

Now using the fact that

tr(Πl |ψi〉〈ψi |Πl) = tr(Π2
l |ψi〉〈ψi |) = tr(Πl |ψi〉〈ψi |),

this becomes P(outcome l) = tr(Πlρ).
As an example consider the pure state |ψ〉 =

√
|V|−1 ∑

j∈V | j〉, that is, the
uniform superposition over all the nodes of a graph. A measurement that we could
perform is defined by a partitioning of the node set V =

⋃
k Sk , leading to a set

of projectors {Πk =
∑

j∈Sk | j〉〈 j |}. This measurement will yield outcome “l” with
probability

P(outcome l) = ‖Πl |ψ〉‖
2 =

∑
j∈Sl

|〈 j |ψ〉|2,

collapsing the quantum state into

|ψ ′〉 =
Πl |ψ〉

‖Πl |ψ〉‖
=

1√
|Sl |

∑
j∈Sl

| j〉.

Another example derives from the set of Fourier modes

{|φk〉}0≤k< |V |, where |φk〉 =
1√
|V|

∑
j∈V

ei
2πk
|V|

j
| j〉,

which leads to a set of projectors {Πk = |φk〉〈φk |}. By noting that the uniform
superposition |ψ〉 = |φ0〉, we see that performing thismeasurement on |ψ〉will yield
the outcome “l = 0” with probability 1, since P(outcome 0) = ‖|φ0〉〈φ0 |ψ

′〉‖2 = 1.
As a result, the quantum state will not change: |ψ ′〉 = Π0 |ψ〉

‖Π0 |ψ〉 ‖
= |ψ〉.

The set of Fourier modes forms an orthonormal basis for HV . In fact we
can associate a measurement {Πk = |ϕk〉〈ϕk |} to any orthonormal basis {|ϕk〉}.
Performing this measurement is commonly referred to as measuring in the {|ϕk〉}
basis. In this thesis wewill be mainly concerned withmeasurements in the standard
basis, where the standard basis denotes the set of node states {| j〉}j∈V of the graph
under investigation. Whenever we discuss a measurement without specifying the
set of measurement operators, we will mean a measurement in the standard basis.
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2.2 Unitary Quantum Walks

The simplest form of a quantum walk (QW) on a graph G = (V, E) is a unitary
QW, defined by a unitary transition operator U over HV . Similarly to a Markov
chain transition operator over G, we require that U respect the locality of G:

〈 j |U |i〉 = U( j, i) = 0 if (i, j) < E .

We denote this condition by U ∼ G. If this condition does not hold, so there exists
(i, j) < E for which 〈 j |U |i〉 , 0, then applying a QW step on the state |i〉, and
performing a measurement on the new state U |i〉, returns the state j with a nonzero
probability ‖ΠjU |i〉‖2 = |〈 j |U |i〉|2 > 0. Therefore a forbidden transition takes
place with a nonzero probability. If the locality condition does hold, then no such
transitions can take place.

As an example we wish to describe a quantum walk on the cycle ZN . It was
however noted early on, in the 1996 work by Meyer [47], that any unitary quantum
walk on the cycle is trivial. Indeed the only unitary matrix that is translationally
invariant and obeys the locality of the cycle is U = eiφP↑ or U = eiφP↓, with
φ ∈ [0, 2π) some phase. This corresponds to trivial dynamics, where the quantum
state is simply multiplied by a phase and translated along the cycle. In the example
below we will show that lifting the graph, like we did for the LMC (example 5),
remedies this issue. It is for this reason that quantum walks are generally defined
over a lifted graph Ĝ, similarly to LMCs. Strictly speaking one could call these
“lifted quantum walks”, but due to the lack of non-trivial non-lifted quantum walks
on general graphs they are simply referred to as quantum walks.

Example 6 (Unitary QW on ZN ). Similar to the LMC example on ZN , we define
the lifted graph Ĝ = (V̂, Ê) by

V̂ = C ×V = {↑, ↓} × {0, 1, 2, . . . , N − 1}.

A unitary QW Û on Ĝ can be described as

Û = S · (C ⊗ I), C ∈ U(2),

where S = |↑〉〈↑| ⊗ P↑ + |↓〉〈↓| ⊗ P↓ is again the shift operator as in Example 5,
and U(2) denotes the group of unitary 2 by 2 matrices. An example is

C =
[√

1 − α
√
α

√
α −

√
1 − α

]
.

Notice the very similar structure to the LMC P̂ defined in (1.6). Both Û and P̂
consist of a unitary resp. stochastic coin toss C ⊗ I and the conditional shift S. The
latter is a permutation matrix, and hence both unitary and stochastic.

Setting α = 1/2 in the above matrix yields the Hadamard matrix, and the
corresponding QW is called the Hadamard QW. In Figure 2.2 we show a plot of
the probability distribution describing the measurement outcome of Ût |↑, 0〉 for
t = 100, the quantum state after 100 steps of the Hadamard QW on the initial state
|↑, 0〉. This QW is extensively discussed in the early papers [14, 15]. Its behavior is
strikingly different from a random walk. The random walk dynamics are diffusive,
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its distribution having a standard deviation inΘ(
√

t) after t steps. On the other hand,
the probability distribution underlying the QW dynamics, when projected back to
the original graph G, are ballistic, spreading out quadratically faster. This will turn
out to be one of the quintessential features of quantum walks that motivate this
thesis. 4

Fig. 2.1 Figure of a quantum walk on the cycle ZN . For α = 1/2 this is the Hadamard quantum walk
discussed in for instance [14, 15]. Similarly to the liftedMarkov chain, shown in Figure 1.3, the quantum
walk spreads out quadratically faster than the random walk on ZN .

−50 0 50

fq[Ût |↑, 0〉]

Fig. 2.2 Plot showing the probability distribution following a measurement of the Hadamard quantum
walk Û t |↑, 0〉 for t = 100 (see next section for definition of fq ). Due to quantum interference effects
the distribution is much less smooth than the random walk distribution, shown in Figure 1.2. The
distribution has a standard deviation that scales with t, quadratically improving the standard deviation
of the random walk.

2.3 Nonunitary Quantum Walks and Mixing

The fundamental theorem of Markov chains states that an ergodic Markov chain
will converge or mix to a unique limit distribution: limt→∞ Ptv = π. This lies at
the basis of all Markov chain sampling algorithms, which have the aim to sample
from the distribution π. A unitary QW does not converge: the limit limt→∞Ut |ψ〉
generally does not exist. Even stronger, a unitary QW is quasi-periodic: for any



2.3 Nonunitary Quantum Walks and Mixing 37

ε > 0 there exist infinitely many τ for which ‖Uτ |ψ〉 − |ψ〉‖ ≤ ε , for all |ψ〉. To see
this, recall that U =

∑
k eiθk Πk for some set {Πk} of orthogonal projectors. For

any finite set {eiθk } there exist infinitely many τ such that for each k it holds that
|eiθkτ − 1| ≤ ε . For any such τ, we indeed find that

‖Uτ |ψ〉 − |ψ〉‖ =

√∑
k

|eiθkτ − 1|2‖Πk |ψ〉‖2

≤ max
k
|1 − eiθkτ | ≤ ε,

using the fact that
∑

k ‖Πk |ψ〉‖
2 = ‖|ψ〉‖2 = 1.

As a consequence, unitary QWs do not seem suited for mixing purposes. It is
for this reason that we introduce the most general form of a quantum walk: a Kraus
mapΨ, defined by a set of Kraus operators {Bk}. In the density operator formalism,
this gives rise to a quantum Markov chain with transitions

ρt 7→ ρt+1 = Ψ[ρt ] =
∑
k

Bk ρtB
†

k
.

Similarly to the unitary transition operator, we demand that these operators respect
the locality of G:

∀k : 〈 j |Bk |i〉 = Bk( j, i) = 0 if (i, j) < E .

Recall that we generally define QWs on a lifted graph Ĝ = (V̂, Ê)2, whereas
we are actually interested in sampling from a distribution over the original graph
G = (V, E). It is for this reason that we will often associate an initialization and
marginalization map to a QW, similarly to what we did for LMCs. This results in
what we call a quantum mixing scheme, which finally maps an input probability
distribution3 overV to an output probability distribution overV, again similar to
LMCs. The initialization map is straightforward, being a one-to-one map F : V 7→
V̂. We extend it to a linear map from probability distributions overV to quantum
states over V̂ by setting

v 7→ F[v] = ρv =
∑
j∈V

v( j)|F( j)〉〈F( j)|.

Towards defining the marginalization or output map, recall that we are finally
interested in a classical distribution over V. We associate a marginalization or
output to a quantum state over the lifted node set V̂ as follows:

1. perform a measurement {Πk = |k〉〈k |}k∈V̂ of the quantum state in the lifted
node basis,

2. output the “parent node” in V that corresponds to the outcome node of the
measurement.

2 We note that if we continue to impose translational invariance of the dynamics, then lifting the state space is still
required (even for this generalized form) if we want to have non-trivial quantum effects.
3 Later on we will compare classical mixing schemes with quantum mixing schemes. To be able to compare these, we
will assume that the input of a mixing scheme is always a classical distribution.
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The output of this scheme can be described by a probability distribution, so that
the scheme in fact maps a quantum state over V̂ to a probability distribution over
V. We denote this map by fq , and for a pure quantum state |ψ〉 over V̂ it is defined
by

fq[|ψ〉] = f (v |ψ〉), where v |ψ〉( j) = |〈 j |ψ〉|2, (2.1)

with f the original marginalization map associated to Ĝ, mapping nodes in V̂ to
their parent nodes inV. If the quantum state is described by a density operator ρ,
then the map becomes

fq[ρ] = f (vρ), where vρ( j) = tr(| j〉〈 j |ρ) = 〈 j |ρ| j〉.

Combining a QW Ψ with an initialization map F and a marginalization map fq
yields a quantum mixing scheme, mapping an “input” distribution v0 overV to an
“output” distribution vt overV:

vt = ( fq ◦ Ψt ◦ F)[v0].

Similar to the classical mixing scheme, we say that the quantum scheme mixes to
a distribution π if for any v0 it holds that

lim
t→∞
( fq ◦ Ψt ◦ F)[v0] = π.

We define its ε-mixing time τ(ε) as

τ(ε) = min{T | max
v
‖( fq ◦ Ψt ◦ F)[v] − π‖TV ≤ ε, ∀t ≥ T}.

Example 7 (ClassicalMarkov Chains).Quantumwalks are a generalization of clas-
sical Markov chains, so it should be possible to cast a general classical Markov
chains as a quantum walk. Indeed, consider a lifted Markov chain P̂ with initial-
ization map F and marginalization map f (for a simple Markov chain, F and f are
simply the identity). We can associate a quantum walk Ψ to this chain through the
Kraus operators {

Bji =

√
P̂( j, i)| j〉〈i |

}
.

These give rise to the map

Ψ[ρ] =
∑
j,i∈V̂

P̂( j, i)| j〉〈i |ρ|i〉〈 j |. (2.2)

A classical probability distribution v over the node set V̂, encoded as a diagonal
quantum state ρv , then gets mapped correctly to P̂v, encoded as the diagonal ρP̂v:

ρv =
∑
i∈V̂

v(i)|i〉〈i | 7→ Ψ[ρv] =
∑
j,i∈V̂

P̂( j, i)| j〉〈i |ρv |i〉〈 j |

=
∑
j,i∈V̂

P̂( j, i)v( j)| j〉〈 j |

=
∑
j∈V̂

(P̂v)( j)| j〉〈 j | = ρP̂v .



2.3 Nonunitary Quantum Walks and Mixing 39

It is a direct consequence that

fq ◦ Ψt ◦ F ≡ f ◦ P̂t ◦ F,

so that the corresponding mixing schemes are also equal. 4

As a more interesting example, we introduce a non-unitary QW on the cycle.

Example 8 (Non-unitary QW on ZN ). The unitary QW Û on the lifted cycle graph
Ĝ, introduced in the previous section, does not mix. We can however adapt it easily
into a closely associated Kraus map that does mix. Thereto consider the following
transition rule, for some 0 ≤ p ≤ 1:

Apply Û. With probability p perform a measurement in the lifted node basis.

This results in the Kraus map

ρ 7→ ρ′ = Ψ[ρ] = (1 − p)ÛρÛ† + pM[ÛρÛ†].

Here the operatorM represents the measurement, mapping the quantum state ρ to
the ensemble

{v( j) = 〈 j |ρ| j〉, | j〉} j∈V̂ ,

or equivalently
ρ 7→ ρ′ = M[ρ] =

∑
j∈V̂

〈 j |ρ| j〉| j〉〈 j |.

We can rewrite 〈 j |ρ| j〉| j〉〈 j | = | j〉〈 j |ρ| j〉〈 j |, so that the measurement operatorM
can be represented by a Kraus map with operators {Bj = | j〉〈 j |}j∈V̂ .

Notice that if p = 1, this Kraus map actually corresponds to the Kraus map
(2.2) for P̂ the LMC (1.6) on ZN that we introduced earlier. As a consequence, if
we implement the QW Û and we measure after every step, we actually retrieve the
LMC.

The Kraus map Ψ for p ∈ (0, 1) is discussed in amongst others [39, 48]. There
it is shown that indeed this map converges: for any density operator ρ it holds that

lim
t→∞
Ψ

t [ρ] =
1
|V̂ |

I =
1
|V̂ |

∑
j∈V̂

| j〉〈 j |,

corresponding to the uniformly distributed ensemble{
v( j) = |V̂ |−1, | j〉

}
j∈V̂

.

This implies that the corresponding mixing scheme, defined above, converges to
the uniform distribution:

lim
t→∞
( fq ◦ Ψt ◦ F)[v0] = π.

In the previous section we mentioned the remarkable fact that the unitary quantum
walk Û on ZN spreads out quadratically faster than the random walk. In [39, 48] it
is shown that this ballistic behavior allows the closely related quantum walk Ψ to
mix quadratically faster than the random walk. Indeed, they show that the mixing
time of the scheme based on Ψ has a mixing time τ ∈ Θ(N). 4
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Apart from the cycle, a very similar quantum walk construction has been shown
to quadratically speed up mixing on the lattice [49], and a log-factor speedup was
shown on the hypercube [38, 50]. This quadratic speedup of quantum walks with
respect to random walks lies at the basis of much of the following work.

Wementioned that general unitary quantumwalks show quasi-periodic behavior
that prevents them from mixing, and how this can be remedied by considering
nonunitary quantum walks as in the above example. A tangent approach to this
problem, as considered in e.g. [15, 39, 49], is to consider the Cesaro average v̄t of
the quantum walk mixing scheme, defined as:

v̄t =
1
t

t−1∑
l=0

vl .

At time step t the output distribution is thus defined as the uniform time average
of the original output distributions. As a trivial example, we can consider the
unitary quantum walk which moves deterministically to the right on the cycle ZN .
Starting from a single node, the corresponding output distribution vt will always
be localized on a single node and will never mix. Its time average v̄t can however
easily be shown to converge to the uniform distribution in Θ(N) steps, so that the
Cesaro mixing time of the walk is defined to beΘ(N). As we discuss in Section 5.3,
our results also carry over to this setting of unitary quantum walks with a finite
Cesaro mixing time.
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In this part of the thesis we prove speed limits that characterize the mixing perfor-
mance of quantum walks, and more general stochastic processes. This is a central
theme in research on the algorithmic use of quantumwalks for speeding upMarkov
chain algorithms [15, 51]. Themixing performance also plays a key role in the study
of physical processes, such as the thermodynamic relaxation of quantum systems
[52] or the scrambling of quantum information around black holes [53].

We prove speed limits that are determined by a property of the underlying graph
called the conductance. This conductance forms an intuitive geometric measure of
the occurrence of bottlenecks in the graph, restricting the probability flow from
certain sections to other sections. Similarly to an electrical circuit, a graph has a
low conductance if this flow is too restricted. Speed limits derived from the graph
conductance stem from early results in differential geometry [54, 55], which took
inspiration from the classic subject of isoperimetric problems. Their utility for
Markov chains was noted rather quickly [56, 57], and they were turned into one of
the standard tools to estimate their mixing time. As we demonstrate in Section 3.2,
the proof of such conductance bounds for Markov chains relies on typical aspects
of classical Markov chains such as contractivity and nonnegativity.

Quantum walks, as we discussed in 2.2, generally lack such well-behavedness
due to for instance interference effects (compare Figure 1.2 with Figure 2.2). This
has allowed them to evade general speed limits for a long time. Existing efforts
can be found in [15] and [51], yet both are restricted to certain special families of
quantum walks and their methods seem not to generalize. We succeed in proving
speed limits for general quantum walks, building on an insight of independent
interest: in Chapter 4 we show that quantum walks can be simulated by classical
Markov chains with memory. Thereto we generalize results from hidden variables
theory [58], showing the existence of certain “stochastic” bridges which allow
to classically track the underlying probability distribution of a quantum walk.
We combine these bridges into a single lifted Markov chain, reminding a classical
version of the “clock Hamiltonians” by Feynman [59] and Kitaev [60] used to prove
the universality of adiabatic quantum computing. These classical lifted Markov
chains bring us back to familiar territory, allowing us to prove a conductance
bound on these LMC simulators in Chapter 5, and by inference also on the original
quantum walks.

These results provide several insights. First of all, quantumwalks have long been
conjectured to show a speedup in mixing behavior [24, 25, 39]. From a physics
perspective, this could lead to mixing time as a “quantum signaler”, where an
improved mixing behavior is diagnostic for quantum effects. By our results, we
see that this is not the case: any speedup in mixing attained by a quantum walk
can also be attained by a classical Markov chain with memory. Second, from a
quantum computing perspective it is valuable to identify tasks for which quantum
walks can achieve an advantage when compared with classical schemes. From our
results it follows that a quantum advantage for mixing should focus on design and
resource constraints, rather than simply on the speed of mixing. Indeed, one of the
key features of a random walk is its simple design and efficient implementation. If
a similarly efficient QW design would allow to accelerate the random walk mixing
time, then this would still provide an advantage over our more complicated lifted
Markov chain construction, even though they have the same mixing time.



Chapter 3
Conductance Bound for Markov Chains

Mixing describes the general convergence of the dynamics of stochastic processes,
examples of which are the equilibration of thermodynamical systems and the
spreading of rumors or diseases. Mixing schemes are also important subroutines of
many algorithms such as the Metropolis algorithm for Markov chain Monte Carlo,
see Example 3 in Chapter 1, the approximation algorithms for the permanent of
a 0-1 matrix [61] and the volume of a convex body [62]. In Chapter 1 we have
introduced the standard concept of mixing time as a quantifier for the time it takes
a Markov chain to mix over a graph, and we have discussed how it can be estimated
by the spectral gap of the Markov chain transition operator. In this chapter we elab-
orate the existing techniques on using the intuitive concept of conductance bounds
to estimate these quantities. We introduce techniques and lemmas that are crucial
to our further results.

The existence of conductance bounds solidifies the following intuition: if a
graph is “badly connected” in some sense, then a Markov chain will spread and
mix slower than otherwise. A natural candidate to quantify this connectedness is
the graph diameter D, measuring the maximum distance between any two nodes.
Indeed, we can prove the following classic bound [5].

Proposition 2 (Diameter bound). If a graph G has diameter D, then any Markov
chain P ∼ G has a mixing time τ ≥ D/2.

Proof. From the triangle inequality we know that

‖Ptv − Ptw‖TV ≤ ‖Ptv − π‖TV + ‖Ptw − π‖TV.

By definition of the diameter, there exist x, y ∈ V such that dist(x, y) = D. It is
clear that then Ptex and Ptey , for t = b(D−1)/2c, are supported on disjoint subsets
of the nodes. By the operational definition of the total variation distance, this shows
that

‖Ptex − Ptey ‖TV = max
S⊂V
|(Ptex)(S) − (Ptey)(S)| = 1,

where the last equality follows from setting S equal to the support of Ptex
or Ptey . Applying the triangle inequality on the left side then shows that
max

{
‖Ptex − π‖TV, ‖Ptey − π‖TV

}
≥ 1

2 . This shows that the mixing time τ >
b(D − 1)/2c, or equivalently τ ≥ D/2. ut

43
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This gives a tight bound for the cycle ZN . In general however the diameter does
not appropriately capture the connectedness of the graph, causing this diameter
bound to be much too loose. Consider for instance the dumbbell graph KN − KN ,
depicted in Figure 3.1, consisting of two complete graphs over N nodes connected
by a single edge. The diameter of this graph is three, yet it can be shown that the
random walk mixing time on this graph isΩ(N2) [63]. This is easily seen by noting
that starting from the left cluster, it will take Θ(N) expected steps before reaching
the central node, after which the central edge will be traversed only with probability
1/N . This example, be it in a differential geometry setting, was originally ascribed
to Eugenio Calabi. It served as the motivating example for the seminal 1969 paper
by Jeff Cheeger [54], where he first introduced the use of conductance bounds, the
main subject of this thesis part.

Fig. 3.1 Dumbbell graph KN − KN , consisting of two complete graphs KN connected by a single
edge. The graphic underlying the graph is taken from the original paper by Cheeger [54].

It is clear that the graphKN−KN is poorly connected: the left half is connected to
the right half by a single edge, which severely congests the flow of probability. The
graph diameter does not capture the occurrence of such bottlenecks, rendering the
trivial diameter bound poorly useful. A different quantity, called the conductance
of the graph, remedies this. In the following section we will define this intuitive
quantity, and show how it can be used to bound the mixing time.

3.1 Markov Chain Conductance

Consider a Markov chain P over a graph G = (V, E) with stationary distribution
π, and a subset S ⊂ V. The conductance Φ(S) of P with respect to the cut (S,Sc)

is defined rather technically by

Φ(S) =
Q(S,Sc)

π(S)
= (PπS) (Sc), (3.1)

with π(S) =
∑

j∈S π( j) and Q(S,Sc) the ergodic flow from S to its complement
Sc , defined as

Q(S,Sc) =
∑

i∈S, j∈Sc

Q(i, j), with Q(i, j) = P( j, i)π(i).

Intuitively, Φ(S) equals the probability that flows from S to its complement Sc

in a single step of the Markov chain, starting from πS . The quantity π(S) in the
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denominator is often seen as a measure of the size, volume or relative importance
of the subset S, as determined by the stationary distribution π. For a random walk,
π(S) = d(S)/dtot, the total degree inside S relative to the total degree of the graph.
The quantity Q(S,Sc) is seen as a measure of the boundary of S, determined by
both π and P. The conductance Φ(S) with respect to the cut (S,Sc) then measures
the size of the boundary of S over the size of S. The conductance Φ(P) of the
Markov chain P is defined as the worst conductance over all subsets S that are not
too big:

Φ(P) = min
π(S)≤1/2

Φ(S). (3.2)

This results in the isoperimetric inequality π(S) ≤ Φ(P)−1Q(S,Sc) for all S
for which π(S) ≤ 1/2. Such isoperimetric inequalities, bounding the maximum
volume that can be enclosed by a boundary of fixed size, have a geometric origin.
The classic example of such an inequality states that the area of any region in the
plane, whose boundary has a length 1, is at most 1/(4π). This maximum is attained
by the circle.

IfP denotes a simple randomwalk, the expressionΦ(P) simplifies. Thereto recall
that the stationary distribution π of a random walk is described by π( j) = d( j)/dtot,
see (1.1), and so the ergodic flow Q(i, j) = 1/dtot. The conductance of a set S then
becomes

Φ(S) =
∑

i∈S, j∈Sc

1/dtot
d(S)/dtot

=
|E(S,Sc)|

d(S)
=
|E(S,Sc)|

|E(S)|
,

where E(S,Sc) denotes the set of directed edges from S to Sc , E(S) the set of
directed edges starting in S, and d(S) =

∑
j∈S d( j). The conductance Φ(P) for a

random walk P thus becomes

Φ(P) = min
d(S)≤dtot/2

|E(S,Sc)|

d(S)
. (3.3)

For the dumbbell graph KN − KN , which we discussed earlier, it is easily seen
that the worst cut is given by cutting the central edge, so that |E(S,Sc)| = 1 and
d(S) = N2−N+1. The randomwalk conductance thus becomesΦ(P) = 1

N2−N+1 ∈

Θ(1/N2).We see that, contrary to the diameter, the conductance effectively captures
the bottleneck of the dumbbell graph.

An interesting and intuitive estimate of the conductance follows from bounding

Φ(S) =

∑
j∈Sc,i∈S P( j, i)π(i)

π(S)
≤

∑
i∈∂S π(i)
π(S)

=
π(∂S)

π(S)
,

where ∂S denotes the inner boundary of S, that is, the set of nodes in S which
have an edge going to Sc . We see that Φ(S) forms a measure for the size of the
boundary of S with respect to the size of S. It follows that

Φ(P) = min
π(S)≤1/2

Φ(S) ≤ min
π(S)≤1/2

π(∂S)

π(S)
. (3.4)

In the following section we elaborate the proof techniques for the intuition that
the mixing time should behave inversely proportional to the conductance.
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3.2 Conductance Bound

Conductance bounds were originally proven in a differential geometry setting.
Cheeger [54] and Buser [55] showed that the smallest positive eigenvalue of the
Laplacian on a Riemannian manifold can be bounded by the isoperimetric constant
of that manifold. These results were translated to a discrete geometric and graph
setting by the seminal work of Fiedler [64], Dodziuk [65] and Alon [57]. The
smallest positive eigenvalue of the graph Laplacian is nowadays called the Fiedler
value, in honor of this work. Alon [57] used these bounds to prove critical results
on an elusive family of graphs called “expander graphs”, to which we will come
back later. In Markov chain analysis, the work by Aldous [56], Lawler and Sokal
[66], Mihail [67] and Jerrum and Sinclair [68] led to the final form presented here.

The crucial instrument for the Markov chain conductance bound will be the
following lemma, which shows how the conductance restricts the amount of prob-
ability flow through a cut. The lemma and the conductance bound following from
it are known results and can be found in for instance [5, 69], yet the proofs are very
instructive and we will need them later.

Lemma 3. If P is an irreducible Markov chain on a graph G = (V, E) with
stationary distribution π, then

(PtπS)(S
c) ≤ tΦ(S).

Proof. We will prove this statement by showing that the “net probability flow” per
time step from S to Sc is bounded by Φ(S). More precisely,

(Pl+1πS)(S
c) − (PlπS)(S

c) ≤ Φ(S) = (PπS)(Sc), ∀l ≥ 0. (3.5)

This suffices to prove the lemma, since we can rewrite

(PtπS)(S
c) =

t∑
l=1

(
(PlπS)(S

c) − (Pl−1πS)(S
c)

)
,

where we used that (P0πS)(S
c) = πS(S

c) = 0. To prove (3.5), we use that by the
operational interpretation of the total variation distance (1.4) it holds that

|(Pl+1πS)(S
c) − (PlπS)(S

c)| ≤
Pl+1πS − PlπS


TV .

Now we can evoke the fact that the total variation distance is nonincreasing under
a stochastic matrix: ‖Pw‖TV ≤ ‖w‖TV for any vector w (see proof of Lemma 1).
This implies that Pl+1πS − PlπS


TV ≤ ‖PπS − πS ‖TV .

We finish the proof by showing that ‖PπS − πS ‖TV = (PπS)(Sc), which equals
Φ(S). We can use the fact that for any distributions p and q

‖p − q‖TV = max
W⊆V

|p(W) − q(W)| =
∑

j:p(j)>q(j)

(
p( j) − q( j)

)
.

For all j ∈ Sc it trivially holds that (PπS)( j) − πS( j) = (PπS)( j) ≥ 0, and for all
j ∈ S we see that
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(PπS)( j) =
∑

i∈S P( j, i)π(i)
π(S)

≤

∑
i∈V P( j, i)π(i)

π(S)
=
π( j)
π(S)

= πS( j),

using the fact that Pπ = π. This implies that we can rewrite

‖PπS − πS ‖TV =
∑

j:(PπS )(j)>πS (j)
(PπS)( j) − πS( j)

=
∑
j∈Sc

(PπS)( j) − πS( j)

= (PπS)(Sc) = Φ(S),

which finalizes the proof. ut

From this lemma it is intuitively clear that the mixing time should be inversely
proportional to the conductanceΦ(P). Indeedwe can now easily prove the following
proposition, which we call the conductance bound for Markov chains. Recall that
τ denotes the (1/4)-mixing time, i.e., the smallest t such that ‖Pt′v − π‖TV ≤ 1/4
for all v and t ′ ≥ t.

Proposition 3 (Conductance bound). If P is an irreducible Markov chain on a
graph G = (V, E) with stationary distribution π, then its mixing time

τ ≥
1

4Φ(P)
.

Proof. We will show that there exists an S ⊂ V such that ‖PtπS − π‖TV ≥
1
2 − tΦ(P) > 1

4 if t < 1/(4Φ(P)), which is equivalent to τ ≥ 1/(4Φ(P)). Thereto, let
S ⊂ V be such that π(S) ≤ 1/2, and define the marginalizing or “coarse-graining”
function fS : RV → R2 by

fS[w] = [w(S),w(Sc)].

Now note that the TV-distance is contractive under coarse-graining:

‖ fS[w]‖TV =
1
2
(|w(S)| + |w(Sc)|)

≤
1
2

( ∑
j∈S

|w( j)| +
∑
j∈Sc

|w( j)|
)
= ‖w‖TV.

Therefore we can bound

‖PtπS − π‖TV ≥ ‖ fS[PtπS] − fS[π]‖TV

≥ ‖ fS[π] − fS[πS]‖TV − ‖ fS[πS] − fS[PtπS]‖TV,

where we also used the triangle inequality. The first term

‖ fS[π] − fS[πS]‖TV =
1
2
(|π(S) − πS(S)| + |π(S

c) − πS(S
c)|)

= 1 − π(S) ≥
1
2
,

by our assumption that π(S) ≤ 1/2. The second term we can bound
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‖ fS[πS]− fS[PtπS]‖TV

=
1
2
(|πS(S) − (PtπS)(S)| + |πS(S

c) − (PtπS)(S
c)|)

= (PtπS)(S
c) ≤ tΦ(S),

by the former lemma. Combining these inequalities we find that ‖PtπS − π‖TV ≥
1
2 − tΦ(S). Maximizing over all sets S for which π(S) ≤ 1/2 indeed gives ‖PtπS −

π‖TV ≥
1
2 − tΦ(P). This finalizes the proof. ut

For the dumbbell graph KN − KN we saw that Φ(P) ∈ Θ(1/N2), so that the
bound becomes

τ ∈ Ω(N2),

which is tight. Another interesting example is the tree graph.

Example 9 (Binary Tree). The complete binary tree G = T2,k of depth k, depicted
in Figure 3.2, is commonly used to represent a data structure or event tree. This
graph has |V| = 2k+1 − 1 nodes, a diameter 2k and a total degree dtot = 4(2k − 1).
From the trivial diameter bound we know that the random walk has a mixing time
τ ≥ k. Using the cut depicted in the figure, and the bound (3.4) on the conductance,
we can estimate the conductance

Φ(P) ≤
π( j)
π(S)

∈ O(1/2k).

By the conductance bound this proves that the random walk mixing time τ ≥
1

4Φ(P) ∈ Ω(2
k). This bound can be shown to be tight [5]: τ ∈ Θ(2k).

We see that the random walk mixing time is exponentially larger than the diam-
eter of the graph. It is hence a natural question to ask whether a more complicated
Markov chain exists that has a better mixing time. For a more general Markov
chain P, obeying the graph locality and mixing to π, we see that the same bound
on the conductance will hold: Φ(P) ≤ π(j)

π(S) ∈ O(1/2k). Therefore the bound on the
mixing time carries over, and we see that in fact any Markov chain mixing to π has
a mixing time τ ∈ Ω(2k).

We encountered a similar situation at the start of Section 1.4, introducing lifted
Markov chains. Work by Gerencsér [7] has shown that any Markov chain on the
cycle ZN has an unsatisfactory mixing timeΩ(N2). We showed however how lifted
Markov chains can circumvent this observation, allowing for an optimal mixing
time Θ(N). We could similarly ask whether there exists a lifted Markov chain that
improves the mixing time of simple Markov chains on the binary tree. Later on we
will show that under the arguably natural condition of invariance there exists no
such LMC. 4

We see that the conductance bound is tight on both the dumbbell graph and the
binary tree. It is however not always tight, as is seen for the randomwalk on the cycle
ZN , which has a mixing time τ ∈ Θ(N2). The conductance Φ(P) ∈ Θ(1/N) so that
the conductance bound gives τ ∈ Ω(N), which is off by a square. Surprisingly, this
is the worst case: the conductance bound is tight up to a square! As a consequence,
not only does it hold that if there is a small conductance cut, then the Markov chain
will mix slowly, but it also holds that if there is no such cut, then the Markov chain
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Fig. 3.2 Binary tree graph T2,k with depth k = 3. The cut (S, Sc ) that minimizes the random walk
conductance Φ(P) ∈ O(1/2k ) is shown.

will mix fast. Proving such a converse result relies on entirely different techniques,
going beyond the scope of this thesis.

Proposition 4 ([70]). If P is an ergodic, reversible Markov chain with stationary
distribution π, then

τ ∈ O
(

1
Φ(P)2

log
1

min π( j)

)
.

Up to the log-factor this is indeed tight for the random walk on the cycle ZN .
The log-factor is necessary, however, as is demonstrated by random walks on the
aforementioned class of expander graphs. This is a remarkable class of bounded-
degree graphs with an optimal conductanceΦ(P) ∈ Θ(1). In other words, they have
no bad cuts. The diameter of any bounded-degree graph is in Ω(log |V|), so by the
trivial diameter bound on the mixing time we know that τ ∈ Ω(log |V|). A random
walk on a bounded-degree graph has π( j) ∈ Θ(1/|V|), so that the above converse
bound leads to a tight estimate τ ∈ Θ(log |V|).

Many proofs on the runtime of Markov chain algorithms rely crucially on the
above lemma, which allows to bound the mixing time by showing that the graph
has no bad cuts. Indeed this is a common strategy, allowing for elegant geometric
arguments. See [5, 57, 70] for examples. For our purpose, we can use it for the
following example. The example shows that in certain cases, contrarily to the tree
graph, there do exist Markov chains that significantly improve the random walk
mixing time, even up to the diameter bound.

Fig. 3.3 Cartesian product graph KN�KN , consisting of two copies of KN with additional edges
between all corresponding nodes. A random walk on KN�KN has a mixing time Θ(N ), whereas the
Markov chain defined by the depicted transition probabilities has a mixing time Θ(1).

Example 10 (KN�KN ). Consider the graph KN�KN , where � denotes the Carte-
sian graph product, depicted in Figure 3.3. A random walk over this graph mixes
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to the uniform distribution, and has a conductance Φ(P) ∈ Θ(1/N). Therefore the
random walk mixing time is bounded by τ ∈ Ω(N), which can be shown to be
tight. Again, this is quite unsatisfactory since the diameter of the graph is 2, hence
we ask the question whether there exists another Markov chain that mixes more
efficiently to the same stationary distribution.

Contrarily to the tree graph, we can indeed find such a Markov chain P′, which
nevertheless obeys the same locality as P and mixes to the same stationary distri-
bution π. Thereto we simply increase the transition probability of the central edges
from 1/N to 1/2, and we symmetrically decrease the other transition probabilities
accordingly to 1/(2(N − 1)), as is shown on Figure 3.3. By symmetry considera-
tions, it is clear that the stationary distribution will still be the uniform distribution.
The conductance of this Markov chain Φ(P′) ∈ Θ(1), so that by Proposition 4 the
mixing time of this Markov chain τ ∈ O(log N). With some more effort this can be
shown to be τ ∈ Θ(1). 4



Chapter 4
Lifted Markov Chains Simulate Quantum Walks

We have already seen that adding memory to a random walk, giving rise to a lifted
Markov chain, can speed up the mixing behavior. The central question answered in
this section is whether quantum effects can accelerate mixing beyond what classical
memory can do. This question is motivated from different angles:

• Some biological mechanisms have been observed to be more efficient than
simple random walk dynamics. An example is the enhanced transport of exci-
tations to reaction centers in photosynthetic systems [24]. It is an exciting and
ongoing question whether this effect is caused by quantum effects. Our results
elucidate whether an improved mixing behavior can be a signaler for quantum
effects, or if this acceleration can also be caused by classical memory effects.

• Much ongoing research is devoted to the opportunities of building a quantum
computer, clarifying which computational tasks can be accelerated or per-
formed more efficiently than on a classical computer (see the “Quantum Algo-
rithms Zoo” [71] for an updated database). Since Markov chain algorithms are
a vital part of classical computing, they naturally raise the question of whether
quantum computers can speed them up beyond what classical memory can do.

The main result in this chapter shows that for any quantum walk we can construct
a lifted Markov chain that has the same mixing time. The size and design effort
required for the construction render it an existence result, rather than a feasible
acceleration speedup technique. However, as we discuss in for instance [72], on
symmetric graphs such as lattices the LMC construction can be as simple as the
quantum walk construction.

4.1 Quantum Walks as Local Stochastic Processes

In the following we will argue that Markov chains, lifted Markov chains, and
quantum walks can in fact be captured by a generalizing class which we call local
stochastic processes. We define this class using stochastic maps, where a stochastic
map Γ over V is a linear map between probability distributions over V. We can
describe local stochastic processes by a family {Γt }t∈N of stochastic maps, so that
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the evolution over t time steps is given by
v 7→ Γt [v].

A stochastic process is local with respect to a graph G = (V, E) if and only if for
any subset S ⊆ V, probability distribution v overV and t ≥ 0 it holds that

(Γt+1[v])(S) ≤ (Γt [v])(S) + (Γt [v])(∂S
c), (4.1)

where ∂Sc denotes the outer boundary of S, i.e., the set of nodes outside of S
that have an edge going to S. We denote a local stochastic process by {Γt ∼ G}.
This definition of locality reflects the intuitive notion that the probability to be in
a subset of the graph at time t + 1 has to be bounded by the probability of already
being in that set at time t and the probability of being in the boundary of the set at
time t. A family {Γt } mixes to π if for all distributions v

lim
t→∞
Γt [v] = π.

Its ε-mixing time is defined as
τ(ε) = min{T | max

v
‖Γt [v] − π‖TV ≤ ε, ∀t ≥ T},

where the maximization again runs over all distributions over V. We again call
τ ≡ τ(1/4) the mixing time of {Γt }. The family is called invariant if

Γt [π] = π.

We can represent the dynamics of a Markov chain P by setting Γt [v] = Ptv.
Owing to theMarkovianity of the evolution, the family has the semi-group property
Γt+t′ = Γt′ ◦ Γt for all t, t ′ ∈ N. A lifted Markov chain P̂ with initialization map
F and marginalizing map f , as introduced in Section 1.4, can be represented as a
stochastic process by setting

Γt [v] = ( f ◦ P̂t ◦ F)[v].

It is easy to check that the resulting stochastic processes are local if and only if the
Markov chain P or the LMC P̂ are local with respect to a graph G.

Towards representing a quantumwalk as a stochastic process, recall the quantum
mixing scheme that we introduced in Section 2.3, which maps initial probability
distributions overV to the “induced probability distribution” overV of the quantum
walk, defined by the outcome distribution of a hypothetical measurement. Given a
general QW Ψ, with initialization map F and marginalization map fq , this scheme
defines a stochastic process by setting

Γt [v] = ( fq ◦ Ψ̂t ◦ F)[v].

Note that the proposed stochastic process only simulates the quantumwalk for initial
states which are classical distributions over the nodes, rather than quantum states.
This is so because we will be interested in comparing mixing schemes whose input
is restricted to classical distributions, allowing a fair comparison between quantum
and classical schemes.

Besides (lifted) Markov chains and quantum walks, there still exists a wide
range of mechanisms that give rise to stochastic processes. Examples of such are
time-dependent processes such as simulated annealing [73] or polynomial filtering
algorithms [74], and other graph exploring techniques such as self-avoiding walks
[75], Cesaro mixing mechanisms [76] and depth- or breadth-first search [77].
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4.2 Local Stochastic Processes as Lifted Markov Chains

Now consider a local stochastic process over a graph G = (V, E), described by a
family {Γt } of local stochastic maps. In the following we will show that for any time
frame there exists an LMC, local with respect to G, that simulates this process. As
a first step, we establish the existence and construction of local stochastic bridges
for a given process, simulating the evolution of a stochastic process from some
fixed initial state. With respect to an initial distribution v, such a bridge consists of
an infinite set of local stochastic transition matrices {P(v)

l
∼ G} such that

Γt [v] =
(
Π

t
l=1P(v)

l

)
v, ∀t ∈ N.

Note the crucial dependency of the bridge on the initial distribution v. In general,
Γt [w] ,

(
Πt
l=1P(v)

l

)
w if w , v. An exception is the case of Markov chains, for

which P(v)
l
= P for all v, l. Qualitatively, the existence of such a bridge connects the

two notions of locality that we consider in this thesis, i.e., the zeros of a transition
matrix and the intuitive notion expressed in (4.1).

Proposition 5 (Local Stochastic Bridges). {Γt ∼ G} if and only if for all v and
t > 0 there exists a stochastic bridge P(v)t ∼ G such that

Γt [v] = P(v)t Γt−1[v].

Proof. The “if” direction is immediate by noting that condition (4.1), which is
equivalent to {Γt ∼ G}, is implied by the fact that P(v)t ( j, i) , 0 for j ∈ S only if
i ∈ S or i ∈ ∂S.

To prove the “only if” direction we generalize a proof by Aaronson [58] from a
hidden-variables context. He showed that for every quantum state |ψ〉 and unitary
U ∼ G there exists a P ∼ G such that vU |ψ〉 = Pv |ψ〉 , where v |χ〉 denotes the
induced distribution of the quantum state |χ〉 defined in (2.1). We generalize this
result to general stochastic processes. To do so, call y = Γt−1[v] and z = Γt [v]. In
order to prove the above statement, it is convenient to resort to results concerning
flows over capacitated networks [78]. In particular, we consider the weighted graph
shown in Figure 4.1, where the edge weights represent the edge capacities. The
network consists of a source node s, a sink node r , and two copiesW andW ′ of
the set of node statesV. The edges are defined as follows:

• node s is connected to any node i ∈ W with capacity y(i),
• any node i ∈ W is connected to any node i′ ∈ W ′ with capacity 1 if and only
if (i, i′) ∈ E,

• any node i′ ∈ W ′ is connected to node r with capacity z(i′).

The capacities y(i) and z(i′), respectively from s and to r , thus reflect the probability
distributions to bemapped. The key observation is the following: if this network can
route a steady flow of value 1 from node s to node r , then the fraction from i ∈ W
that is routed towards i′ ∈ W ′ directly defines the entry P(v)t (i

′, i) that we need.
Indeed, to route a flow of value 1 from s toW (resp.W ′ to r) the outgoing edges
from s (incoming edges from r) will have to be used to their full capacities y(i)
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(z(i′)). By the central routing, the flow incoming in node i′ is
∑

i∈V P(v)t (i
′, i) y(i).

Since the incoming flow must equal the outgoing flow, this should equal z(i′) by
our former argument, so that∑

i∈V

P(v)t (i
′, i) y(i) = z(i′).

This implies that P(v)t y = z, as we claimed. In the below Figure 4.1 we give an
example of this construction.

Fig. 4.1 (left) The “paw graph”. (right) Illustration of the flow network construction between probability
distributions y = Γt−1[v] and z = Γt [v].

To prove that a flow of value 1 exists, we invoke the max-flow min-cut theorem
[78]. This classic theorem states that the maximum flow value that can be routed
from node s to node r is equal to the minimum cut value of the graph, where a
cut value is the sum of the capacities of a set of edges that disconnects s from r .
Our proof thus comes down to showing that any cut has a value ≥ 1. It is clear that
cutting all edges leaving s or arriving at r disconnects the graph, amounting to a
cut value of 1. The minimum cut value will therefore be smaller than or equal to
1. Since cutting any middle edge betweenW andW ′ already gives a cut value
≥ 1, we know that any cut with a value < 1 cannot include any such edge. We can
therefore restrict our further search to cuts consisting of outgoing edges from s and
incoming edges from r . Thereto fix a subset X ⊆ W ′, and assume that we cut the
edges from its complement Xc to r . To block any flow from s to r , while keeping
all middle edges, we must then cut the edges from s to all the i ∈ W which have
an edge to X. This corresponds to all the edges from s to the nodes inW which
correspond to X ∪ ∂Xc . The value of this cut is

z(Xc) + y(X) + y(∂Xc) = 1 − z(X) + y(X) + y(∂Xc).

Recalling that y = Γt−1[v] and z = Γt [v], the locality condition (4.1) imposes that

z(X) ≤ y(X) + y(∂Xc).

From this it follows that the minimum value of the cut is exactly 1. This minimum
is attained for example by setting X = ∅ the empty set, corresponding to cutting all
incoming edges of r . As a consequence, a solution P(v)t to our problem exists. ut
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The existence of stochastic bridges being established, we can imagine the fol-
lowing transition rule, using the shorthand P(i)t ≡ P(ei )t :

If X0 = i and the current state Xt = j, go to k with probability P(i)
t+1(k, j).

This transition rule simulates the original stochastic process. To see this, notice that
if X0 = i then Xt is distributed according to

(
Πt
l=1P(v)

l

)
ei = Γt [ei]. By linearity,

if X0 is distributed according to some distribution v, then Xt will be distributed
according to ∑

i

v(i)
(
Π

t
l=1P(v)

l

)
ei =

∑
i

v(i)Γt [ei] = Γt [v],

correctly simulating the original stochastic process.
The rule however is both time inhomogeneous and non-Markovian, depending

on t as well as on the initial state X0. For any finite time window [0,T] however
we can implement this rule with a lifted Markov chain. Thereto we lift the graph
G so that the state of a walker not only consists of its current position j ∈ V, but
also holds its initial position i = X0 and a time index or “clock” t ∈ [0,T] (this is
reminiscent of the “clock Hamiltonians” used by Feynman [59] and Kitaev [60]),
resulting in the lifted node set

V̂ = V × {0, 1, . . . ,T} × V,

where the last register contains the current position of the walker. The first register
containing X0 will remain static during the walk, whereas the second register will
be augmented with every time step. Now it is easy to construct an LMC P̂T which
implements the above transition rule:

P̂T =
∑
j∈V

T−1∑
t=0

Πj ⊗ et+1e†t ⊗ P(j)
t+1 +ΠT , (4.2)

whereΠj = eje
†

j , and the last termΠT = I⊗eT e†T ⊗ I is a dummy term simply keep-
ing the walk stationary after T steps. The initialization map F and marginalization
map f associated to this LMC are trivially defined by

F[ei] = ei ⊗ e0 ⊗ ek, f [ei ⊗ et ⊗ ej] = ej, ∀i, j ∈ V, t ∈ [0,T].

It is easy to check that this LMC effectively implements the proposed transition
rule, mapping for instance

F(ei) = ei ⊗ e0 ⊗ ei 7→ P̂T (ei ⊗ e0 ⊗ ei) = ei ⊗ e1 ⊗ (P
(i)
1 ei)

7→ P̂2
T (ei ⊗ e0 ⊗ ei) = ei ⊗ e2 ⊗ (P

(i)
2 P(i)1 ei)

7→ . . .

Finally we find the following proposition.
Proposition 6. The LMC (4.2) simulates the stochastic process {Γt } for T time
steps. That is, for all t ∈ [0,T] it holds that

f ◦ P̂t
T ◦ F = Γt .

This shows that indeed local stochastic processes, and in particular quantum walks,
can be simulated by LMCs for any finite time frame.
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4.3 . . . with the same Mixing Time

The LMC construction in (4.2) simulates a local stochastic process for a finite time
window [0,T]. If we choose for instance T = τΓ, with τΓ the mixing time of the
original stochastic process, then clearly the mixing time of the LMC will also be
τΓ. In general however we are interested in the long term behavior of the dynamics,
as is reflected by the ε-mixing time for asymptotically small ε . By the amplification
lemma 1 we know that for simple Markov chains it holds that τ(ε) ≤ τdlog(1/ε)e,
hence the mixing time τ correctly characterizes the asymptotic mixing behavior.
For more involved schemes such as LMCs this inequality does not hold as a rule.
This is clearly demonstrated by our LMC construction (4.2) from the previous
section: it simulates the original stochastic process for T steps, after which it stands
still. As a consequence, if T = τΓ then indeed its mixing time τ = τΓ. However,
after these first T steps it will stand still and not converge any further, so that its
ε-mixing time τ(ε) will in general be infinity for all ε < 1/4.

In this section we show that if the original stochastic process is invariant,
Γt [π] = π, then we can remedy this. Indeed in this case we can build an LMCwhose
ε-mixing time is τ(ε) ≤ τΓ dlog(1/ε)e. Thereto we will first modify the original
stochastic process into a “pseudo-Markov process” with the same ε-mixing time,
critically relying on the invariance of the stochastic process. Then we will show
that we can modify the LMC simulator (4.2) from the previous section into another
LMC that simulates this modified stochastic process for all time, thus having the
same ε-mixing time.

We call a stochastic process {Γt } a Markov process if

Γt = Γ ◦ Γ ◦ · · · ◦ Γ︸            ︷︷            ︸
t times

≡ Γt .

This implies that the stochastic process is of the form Γt = Pt = Γt , with the
Markov chain P defined by P ≡ Γ. We call a stochastic process {Γt } a pseudo-
Markov process over T > 0 steps if

Γt = Γt modT ◦ Γ
bt/T c
T .

This essentially means that the stochastic process is “Markovian overT time steps”,
i.e., the stroboscopic stochastic process {Γt ·T = ΓtT } is Markovian. An example
of such a process is a periodic time-inhomogeneous Markov process, such as a
polynomial filter, described in work by the author [74]. Such process periodically
cycles through a finite set of transition matrices {Pl}

T
l=1:

Γt = Pt modT . . . P1 (PT . . . P1)
bt/T c .

The following lemma shows that if a stochastic process is invariant, then we can
always modify it into a pseudo-Markov process whose ε-mixing time is character-
ized by the original mixing time. This property will prove crucial for resolving the
aforementioned mixing time issue of our LMC construction (4.2).

Lemma 4. Let {Γt } be an invariant stochastic process that mixes to π with a mixing
time τΓ(ε) for all ε > 0. Let ε0 < 1/2 and T = τΓ(ε0). Then the pseudo-Markov
process {Γ̃t } defined by
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Γ̃t = Γt modT ◦ Γ
bt/T c
T

has an ε-mixing time

τ(ε) ≤ τΓ(ε0)

⌈
log 1

ε

log 1
2ε0

⌉
, ∀ε > 0.

The proof of the lemma runs along the exact same lines as the proof of the
amplification lemma 1, so we will omit it. For ε0 = 1/4 this gives a mixing
time τ(ε) ≤ τΓ ·

⌈
log 1

ε

⌉
, which is the same upper bound that can be derived for the

original process. Under quite natural condition (e.g., uniform contraction rate) this
upper bound will be tight, possibly up to log-factors, so that the stochastic process
and the pseudo-Markov process effectively have the same ε-mixing time.

The key observation now is that we can simulate any pseudo-Markov process
with an LMC for an indefinite number of steps. Thereto, let {Γt } be a pseudo-
Markov process over T steps, and consider its LMC simulator P̂T (4.2) defined in
previous section. By the fact that the stochastic process is pseudo-Markov, we can
marginalize and reinitialize the simulator every T steps: since f ◦ P̂t ◦ F = Γt for
all t ∈ [0,T], it holds that

Γt = Γt modT ◦ Γ
bt/T c
T = ( f ◦ P̂t modT ◦ F) ◦ ( f ◦ P̂T ◦ F) bt/T c .

We can use the clock register of the LMC to encode this, basically by implementing
the extra step

Q = (F ◦ f )ΠT + (I − ΠT ),

whereΠT projects on the clock state equaling eT . If need be, we can rewrite F ◦ f in
elementary terms. Thereto recall that f [ei ⊗ et ⊗ ej] = ej and F[ei] = ei ⊗ e0 ⊗ ek ,
so that

(F ◦ f )[ei ⊗ et ⊗ ej] = ej ⊗ e0 ⊗ ej, ∀i, j ∈ V, t ∈ [0,T].

We can write this as

F ◦ f =
∑
i, j∈V

T∑
t=0

eje
†

i ⊗ e0e†t ⊗ eje
†

j .

With P̂T defined in (4.2), this results in the LMC simulator

P̂ = QP̂T . (4.3)

As the main result of this section we find the following proposition.

Proposition 7. If {Γt } is a pseudo-Markov process over T steps, then the LMC P̂
simulates it for all time. That is, for all t ≥ 0 it holds that

f ◦ P̂t ◦ F = Γt .

FromLemma 4we know that to any invariant stochastic process we can associate
a pseudo-Markov process with a closely related ε-mixing time. Combined with the
above proposition, this implies that we can construct an LMC with the same ε-
mixing time, as formulated in the following theorem.
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Theorem 3. Let {Γt } be an invariant stochastic process that mixes to π with a
mixing time τΓ(ε) for all ε > 0. Let ε0 < 1/2 and T = τΓ(ε0). Then the LMC
P̂ = QP̂T has an ε-mixing time

τ(ε) ≤ τΓ(ε0) ·

⌈
log 1

ε

log 1
2ε0

⌉
, ∀ε > 0.

This is the main result of this chapter. At the beginning of the chapter we raised
the question of whether an observed speedup in mixing of some physical system
can be diagnostic for quantum effects. By the above results we see that this is not
the case, as the same speedup can always be achieved by a classical walking particle
with memory. Even stronger, we see that the entire family of invariant stochastic
processes cannot improve mixing beyond what LMCs can do.

This result should be nuanced by the fact that the LMC construction is very
extensive in memory and design effort. The size of the local memory equals
τΓ(ε0)|V|, and the construction of the stochastic bridges requires solving flow
problems over the full graph. In subsequent work, Dervovic [79] showed that the
full construction of the LMC requires a number of steps that is polynomial in |V|.
From an algorithmic perspective, such time and memory space costs are generally
infeasible. For comparison, a MCMC algorithm is deemed efficient only if its
construction and resources scale polynomially in log |V|, rather than |V|. This
open end creates room for a quantum advantage. Specifically, a quantum advantage
can be found by answering the following two open questions:

1. Is there an efficient QW construction that speeds up mixing?
A randomwalk can be implemented efficiently if we are merely given an initial
node of a graph and access to a “neighborhood oracle” (which returns the
neighbors of the node that you are at). Under these conditions, can we construct
and implement a QW that accelerates the randomwalk mixing time? Currently
the existing examples of similarly efficient quantum walk constructions for
mixing are restricted to highly symmetric graphs such as lattices [15, 39, 49],
yet on such graphs there also exist efficient LMC constructions [8, 9, 72].

2. Is there an efficient LMC construction with the same mixing time as a QW?
That is, can LMCs simulate the mixing behavior of QWs with a memory size
polynomial in log |V|?

In Appendix A we show that if the condition of invariance is dropped (which
is a running assumption throughout this part) then there exist examples where
efficient QW constructions exist, such as the binary tree graph, yet no efficient
LMC constructions are known.



Chapter 5
Conductance Bound for Quantum Walks

Undoubtedly, quantum walk algorithms have been the most successful in acceler-
ating search problems. Examples of such are the collision problem [4] for finding
two equal elements among a list, and the problem of searching solutions in a de-
cision tree [13]. A range of algorithms and settings have led to quantum walk
speedups for search problems that range from quadratic [4, 18, 22] to exponential
[13, 35, 36, 80].

Much less is known about quantum walk algorithms for mixing, to some extent
the dual task to search. Our running example of the cycle graph ZN shows that
quantum walks can quadratically accelerate the random walk mixing time from
Θ(N2) to Θ(N). For the cycle this is optimal, as its diameter is bN/2c and the
proof of the diameter bound in Proposition 2 easily generalizes to quantum walks.
Alternatively, recall the binary treeT2,k from example 9 in Section 3.2. The diameter
of this graph equals 2k, yet the random walk mixing time is Θ(2k). Can quantum
walks quadratically improve the mixing time toΘ(

√
2k)? Can they improve it to the

optimal diameter bound Θ(k)?
In the coming chapter we show that, under the arguably natural condition of

invariance, the speedup of quantum walks can be bounded using properties of the
graph. As an example, it proves that on graphs of bounded degree, the QW speedup
can be nomore than quadratic. This extends an earlier observation by [15] to general
quantum Markov chains. These insights follow from the main contribution of this
chapter: a conductance bound for quantum walks, and for stochastic processes in
general. We achieve this bound by proving a conductance bound for the family
of LMC simulators P̂ defined in the previous chapter. Since for any stochastic
process there exists such a simulator, this yields a conductance bound for stochastic
processes, and for quantum walks in particular.

5.1 Conductance Bound for LMC Simulator

Let P̂ ∼ G denote the LMC simulator of a stochastic process {Γt ∼ G}, defined
in (4.3). To prove a conductance bound on P̂ we will make use of the induced
Markov chain of a lifted Markov chain, as introduced in [63]. This Markov chain
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roughly represents the projection of an LMC back onto the original graph. Given
an irreducible LMC P̂ on a lifted graph Ĝ, note first that P̂ necessarily has a unique
stationary distribution π̂ > 0 (although the LMC might not converge to π̂) and
f (π̂) = π, with π the original stationary distribution. For all i, j ∈ V, the induced
Markov chain PV is then defined as

PV( j, i) =
∑

l∈ f −1(j),k∈ f −1(i)

π̂(k)
π̂( f −1(i))

P̂(l, k),

so the transition probability PV( j, i) is a weighted mean of the LMC transition
probabilities P̂(l, k) from the child nodes of i to the child nodes of j. Now note
that because P̂ is irreducible, also PV will be irreducible, and it is easy to check
that its unique stationary distribution will be π. We will need the following lemma,
wherein we use the shorthand Ŝ = f −1(S):

Lemma 5. For any subsetS ⊂ V, the conductanceΦPV (S) of the inducedMarkov
chain PV equals the conductance ΦP̂(Ŝ) of the original LMC P̂.

Proof. Recall the definition of the conductance

ΦPV (S) =
QV(S,Sc)

π(S)
,

with QV(S,Sc) =
∑

j∈Sc,i∈S PV( j, i)π(i) the ergodic flow from S to Sc . We can
prove that this ergodic flow equals the total ergodic flow of the LMC P̂ from the
set of child nodes Ŝ to Ŝc . Thereto notice that

QV(i, j) = PV( j, i)π(i) =
∑

l∈ f −1(j),k∈ f −1(i)

π̂(k)
π̂( f −1(i))

P̂(l, k)π̂( f −1(i))

=
∑

l∈ f −1(j),k∈ f −1(i)

Q̂(k, l) = Q̂( f −1(i), f −1( j)),

from which we immediately find that QV(S,Sc) = Q̂(Ŝ, Ŝc). Combined with the
fact that π(S) = π̂(Ŝ), we indeed find that

ΦPV (S) =
QV(S,Sc)

π(S)
=

Q̂(Ŝ, Ŝc)

π̂(Ŝ)
= ΦP̂(Ŝ). ut

An interesting consequence is that given a graph G, a stationary distribution π
and a cut (S,Sc), an LMC cannot improve the conductance over the best simple
Markov chain:

ΦP̂(Ŝ) = ΦPV (S) ≤ max
P∼G:Pπ=π

ΦP(S).

This captures the intuition that if there is a bad cut in the original graph, there
will still be a bad cut in the lifted graph. Motivated by this, we define the graph
conductance ΦG,π

ΦG,π = max
P∼G:Pπ=π

Φ(P),

as the conductance of the best simple Markov chain. From the above lemma we
know that also ΦG,π = maxP̂∼Ĝ:P̂π̂=π̂ ΦP̂ , maximizing over all LMCs with a
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stationary distribution π̂ such that f (π̂) = π. Using the bound on Φ(P) from (3.4),
we can prove the useful estimate

ΦG,π ≤ min
π(S)≤1/2

π(∂S)

π(S)
. (5.1)

We can now prove the following proposition, which bounds the mixing time of the
LMC simulator in terms of the graph conductance.

Proposition 8. The mixing time τ of the LMC simulator P̂ = QP̂T of an invariant
pseudo-Markov process over T steps, defined in (4.3), satisfies the inequality

τ + T ≥
1

4ΦPV

≥
1

4ΦG,π
.

Proof. We will prove this statement by showing that (i) the LMC mixing scheme
( f ◦ P̂t )without initialization map F, starting from general initial distributions over
V̂, adds at most T steps to the LMC mixing scheme ( f ◦ P̂t ◦ F) with F, and (ii)
the mixing scheme without F has a mixing time at least 1/(4ΦPV ).

We first prove the first point. By definition of the mixing time we know that for
initialized distributions over V̂ of the form F[v], with v some distribution overV,
it must hold that( f ◦ P̂τ)F[v] − π


TV
=

( f ◦ P̂τ ◦ F)[v] − π


TV
≤

1
4
. (5.2)

By the structure of the LMC, we can use this to prove that for general initial
distributions w over V̂ it holds that( f ◦ P̂τ+T

)
w − π


TV
≤

1
4
.

Thereto, first consider an initial distribution w = ev ⊗ et ⊗ ev′ , localized on an
arbitrary node of V̂. By construction of P̂, it holds that after exactly T − t steps of
the LMC this state will be “reinitialized” by the operator Q, so that P̂T−t = F[v′]
for some v′. As a consequence, for all t ′ ≥ τ it holds that( f ◦ P̂t′+T−t )w − π


TV
=

( f ◦ P̂t′)F[v′] − π


TV
≤

1
4
,

where the last inequality follows from (5.2). Since T − t ≤ T , this shows that( f ◦ P̂t′+T )w − π


TV ≤ 1/4 for all initial distributions w = ev ⊗ et ⊗ ev′ . For a
general w over V̂, we can simply apply the triangle inequality to prove that indeed( f ◦ P̂t′+T )w − π


TV ≤ 1/4. This finishes the first part of the proof.

Now we prove the second point. We can bound the mixing time of the LMC
without initialization map by considering the initial state π̂

Ŝ
. By Lemma 3 in

Chapter 3 we know that

(P̂t π̂
Ŝ
)(Ŝc) ≤ tΦP̂(Ŝ) = tΦPV (S),

with the last equality following from Lemma 5. We can hence bound the mixing
time similarly to the proof of 3. Thereto recall the function fS(w) = (w(S),w(Sc)),
and the fact that the total variation distance is contractive under coarse-graining,
so that
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‖ f (P̂t π̂
Ŝ
) − π‖TV

≥ ‖( fS ◦ f )(P̂t π̂
Ŝ
) − fS(π)‖TV

≥ ‖ fS(π) − fS(πS)‖TV − ‖ fS(πS) − ( fS ◦ f )(P̂t π̂
Ŝ
)‖TV.

We can again bound the first term ‖ fS(π) − fS(πS)‖TV = 1 − π(S) ≥ 1/2, and the
second term ‖ fS(πS) − ( fS ◦ f )(P̂t π̂

Ŝ
)‖TV = (P̂t π̂

Ŝ
)(Ŝc) ≤ tΦPV (S). Combining

these inequalities gives

‖ f (P̂t π̂
Ŝ
) − π‖TV ≥

1
2
− tΦPV (S) ≥

1
2
− tΦPV .

This implies that the mixing time of the LMC without initialization map is lower
bounded by 1/(4ΦPV ), and so the LMC with initialization has a mixing time

τ ≥
1

4ΦPV

− T ≥
1

4ΦG,π
− T . ut

5.2 Conductance Bound for Local Stochastic Processes

As an almost direct consequence we find a conductance bound for the original
stochastic process, which is the main contribution of this chapter and, to some
extent, this part of the thesis.

Theorem 4 (Conductance bound). Let {Γt ∼ G} represent an invariant stochastic
process that mixes to π. Then its mixing time

τΓ ≥
1

12ΦG,π
.

This bound is tight up to a log-factor: there exists an invariant stochastic process
that has a mixing time

τ ∈ O
(

1
ΦG,π

log
(

1
mini∈V π(i)

))
.

Proof. The lower bound follows by setting ε = ε0 = 1/4 and T = τΓ in Theorem 3,
which shows that the LMC P̂ = QP̂τΓ has a mixing time τ ≤ 2τΓ. Combining this
with Proposition 8, stating that τ ≥ 1/(4ΦG,π)−τ

Γ, we find that τΓ ≥ 1/(12ΦG,π).
The upper bound follows from applying Theorem 2, proven in [9], to theMarkov

chain P that maximizes the conductance, P = argmaxP∼G:Pπ=πΦP . ut

This shows that invariant stochastic processes, in all their generality, must obey a
non-trivial conductance bound. At the start of this chapter we discussed the speedup
range of quantum walks over random walks. On graphs of bounded degree we can
now prove that quantum walks can at most quadratically speed up random walks
on graphs, up to a log factor. This extends an observation in [15]1 from unitary
quantum walks to general quantum walks.

1 Their bound for unitary quantum walks is better by a log-factor, yet this is a consequence of a faulty assumption that
random walks on bounded degree graphs have a mixing timeO(1/Φ(P)2). The correct bound is stated in (5.3), which
is tight on expander graphs as we discussed below Proposition 4.
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Corollary 2. If τ is the mixing time of a random walk on a bounded degree graph,
then any quantum walk mixing scheme has a mixing time Ω(

√
τ/log 1

|V |
).

Proof. With π the random walk stationary distribution and Φ(P) the random walk
conductance, we can use the estimate (5.1) and the expression (3.3) to bound

ΦG,π ≤ min
π(S)≤1/2

π(∂S)

π(S)
= min
π(S)≤1/2

d(∂S)
d(S)

≤ dmax min
π(S)≤1/2

|E(S,Sc)|

d(S)
= dmaxΦ(P).

For graph of bounded degree it holds that dmax ∈ Θ(1). Using ΦG,π ≥ Φ(P), we
see that ΦG,π ∈ Θ(Φ(P)). As a consequence, the bound in Theorem 4 shows that
a quantum walk mixing scheme has a mixing time τ ∈ Ω(1/Φ(P)). If we combine
this with the upper bound on the random walk mixing time from Proposition 4,

τRW ∈ O
(

1
Φ(P)2

log
1

min π( j)

)
, (5.3)

we find the statement in the proposition. ut

This bound cannot be attained in general, as follows from the below example.

Example 11 (Binary tree). At the start of the chapter we asked whether quantum
walks could speed up the mixing time on the binary tree, maybe even up to the
diameter bound. Directly applying Theorem 4 to a quantum walk on T2,k allows
to prove that this is not the case. In Example 9 we already argued that the graph
conductance for the binary tree T2,k is bounded by

ΦG,π ∈ Θ(1/2k),

with π the stationary distribution of the random walk. From our Theorem 4 we see
that the mixing time of any invariant stochastic process on T2,k is therefore τ ∈
Ω(2k), which equals the random walk mixing time. Hence no invariant stochastic
process, and in particular no LMC or quantum walk, can speed up the random walk
mixing time. 4

Contrary to the bounded degree cases, there is no limit on how much random
walks on graphs of unbounded degree can be accelerated, as we saw earlier in
Example 10. There we considered the graph KN�KN , on which a random walk
has a mixing time τ ∈ Θ(N). We showed how already choosing a better Markov
chain allows to improve this mixing time to τ ∈ Θ(1).

5.3 Applications

The main contribution of this chapter is the fact that invariant stochastic processes,
and in particular quantum walks, have a mixing time τ ∈ Ω(1/ΦG,π). In the
following we discuss some applications.
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Time-Inhomogeneous and Imprecise Markov Chains

A time-inhomogeneousMarkov chain is described by a family of transitionmatrices
{Pt }t∈N, so that Xt is distributed according to

vt = PtPt−1 . . . P1v0.

If this chain mixes to π, and for each Pt it holds that Ptπ = π, then this describes
an invariant stochastic process. Examples of such are given in [74, 81, 82], and in
[83, 84] for card shuffling. In these papers the difficulty of analyzing such time-
inhomogeneous chains is stated explicitly. By our result we see directly that its
mixing time is bounded by τ ≥ 1/(12ΦG,π). This shows that the gain of such
time-varying strategies is limited, and can not improve the mixing time beyond
what for instance lifted Markov chains or quantum walks can do.

Related to this case is the setting of “imprecise Markov chains”, see for instance
[85]. Here a set of Markov chains {Pl} is considered, reflecting uncertainty on the
precise transition mechanism. All that is known is that at any time step one of the
Markov chains of the set is applied. Under the condition that there exists some π
such that Plπ = π for all l, we can use our conductance bound to infer that the
mixing time will be lower bounded by 1/(12ΦG,π), whereG is the “minimal” graph
(having the least amount of edges) such that Pl ∼ G for all l.

It might also be interesting, yet we leave it as an open direction, to apply our
results to recent work by Onorati et al [53] on quantum scrambling processes,
in which the mixing properties of unitary time-varying quantum processes are
considered.

Time-Averaged Processes

Consider the following stochastic process:

vt = Γt [v0] =
1
t

t−1∑
l=0

Ptv0,

for some Markov chain P. We call vt the Cesaro average of P, and it is sometimes
analyzed for periodic Markov chains that otherwise do not converge (or unitary
quantum walks, see below). The Cesaro average is a special case of the family
of time-averaged processes (or blind stopping rules), as discussed in for instance
[76]. A distribution vt resulting from a time-averaged process corresponds to the
output of a Markov chain run for a number of steps distributed according to some
distribution over [0, t]. In certain cases, time-averaging can speed up the mixing
time over a simple Markov chain. Consider for instance the simple shift P = P↑ on
ZN . It is not difficult to show that the Cesaro average of P↑ will converge to the
uniform distribution in O(N) steps, which is quadratically faster than any simple
Markov chain. By our conductance bound, we easily see that time-averaging cannot
improve the mixing time beyond Θ(1/ΦG,π), which is satisfied for instance on the
cycle.
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We already mentioned earlier that also in the quantum walk literature it is
common to consider the Cesaro average of the output distribution. This is a way
of dealing with the quasi-periodicity of a unitary quantum walk, whose output
distribution might not converge, yet its Cesaro average will. We see that our LMC
simulator and conductance bound also hold when considering the mixing time of
this Cesaro average.

Finite-Time Convergence

Consider the following algebraic problem, related to finite-time convergence [86],
sets of indecomposable and aperiodic matrices [87] and the inverse eigenvalue
problem [88]:

What is the minimal number of symmetric stochastic matrices over a graph G whose
product has rank one?

From Theorem 4 it follows that this number is bounded by 1/(12ΦG,π) with π
the uniform distribution. To see this, note that any set of symmetric, stochastic
matrices {Pl, 1 ≤ l ≤ T} defines a time-inhomogeneous Markov chain that leaves
the uniform distribution π invariant. Now assume that the product PT . . . P1 has
rank one. Since PT . . . P1 is stochastic, and PT . . . P1π = π, we find that for all
distributions v it necessarily holds that

PT . . . P1v = π,

and so the mixing time of this time-inhomogeneous Markov chain is τ ≤ T . By
Theorem 4 this implies that T ≥ 1/(12ΦG,π).

Search Algorithms

We briefly introduce search problems and algorithms, and show how we can apply
our conductance bound to them. In the second part of this thesis we will treat these
problems and algorithms in more detail.

Consider a graph G = (V, E) and a “marked node” z ∈ V that we are looking
for, for example representing a solution to some problem. A common strategy to
find z is to run a random walk or Markov chain P over G, starting from some initial
probability distribution overV, until we encounter z. We can cast this problem as
a mixing problem by adapting P into an interpolated Markov chain Ps , where we
add a strong self loop of strength s to the marked node z:

Ps(z, z) = s, Ps( j , z, z) = (1 − s)P( j, z),

and Ps( j, i) = P( j, i) elsewhere. The interpolated Markov chain is shown in Fig-
ure 5.1. It is proven in [22] that we can choose 1 − s ∈ Θ(π(z)) such that the
stationary distribution πs of Ps concentrates on z: πs(z) ∈ Θ(1). Therefore we can
run this Markov chain until it converges to πs , which will return z with constant
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probability. We can then repeat this scheme in order to find z with probability
arbitrarily close to 1.

Our conductance bound allows to prove a lower bound on the runtime of this
scheme, and in fact any invariant stochastic process that can be used to accelerate
Ps .

Proposition 9. Any invariant stochastic process that mixes to πs has a mixing time
τ ∈ Ω

(
1/π(z)

)
.

Proof. Using our conductance bound, we can prove the statement by showing that
ΦG,πs ∈ O(π(z)). Thereto we set S = {z}. With respect to a general P ∼ G with
Pπs = πs , it holds that

ΦP(S) =
∑
j∈Sc

P( j, z)πs(z)
πs(z)

= P(Sc, z) ≤ s = π(z).

This bound is independent of P and hence ΦG,πs ∈ O(π(z)), finally showing that
τ ∈ Ω

(
1/π(z)

)
. ut

We retrieve the classic bound Ω(1/π(z)) on the search time of an element z
using any Markov chain P. In addition we find that any more advanced quantum
or LMC scheme that mixes to πs must also obey this bound. In the second part of
this thesis we discuss more involved quantum walk algorithms that do break this
bound, and must therefore also break invariance.

Fig. 5.1 Interpolated Markov chain Ps , adding a self-loop of strength s to the marked element z. If
1 − s ∈ Θ(π(z)) then the stationary distribution πs of Ps has a large overlap with z: πs (z) = 1/2. The
conductance bound in Theorem 4 proves that any invariant scheme mixing to πs has a mixing time
Ω(1/π(z)).



Chapter 6
Observations and Outlook

In this chapter we compare our results to some existing work relevant to this thesis
part. We also provide some further observations that relate to our results, and we
discuss remaining open questions.

6.1 Comparison to Existing Work

Simulation of QuantumWalks. In Chapter 4 we demonstrated how lifted Markov
chains can be used to simulate quantum walks.

In a different line of work, as presented in [89–92], the classical simulation of
quantumwalks on latticeswith light waves is discussed. They showhow for instance
the polarization and frequency of a classical light wave can be used to encode the
coin and position, respectively, of a quantum walk on the cycle. The interference
effects of classical optics then allow to simulate the dynamics of quantum walks
on lattices. The main conclusion of these papers is that “the ingredients of QWs,
namely, superposition, interference, and, indeed, a form of entanglement, are also
present in classical optics” (quoted from [89]). This seems to point to superposition
and interference as the source of the quantum advantage. Our results, in contrast,
show that the QW behavior can also be obtained from dynamics that do not exhibit
any such features: classical stochastic processes with memory, lacking these wave-
like features of classical optics. In addition, the aforementioned papers consider
the simulation of QWs using analog classical optics, whereas we use lifted Markov
chains, an existing class of models in digital probabilistic computation. Indeed,
LMCs were originally proposed to improve the performance of Markov chain
Monte Carlo and similar methods on graphs. Since QWs have also been motivated
by the same tasks, our result allows for a more direct comparison. It is also this
fact that allowed to prove the conductance bounds from Theorem 4. To the best
of the author’s knowledge, the classical optics framework does not allow for any
result of this kind. Finally, from the current literature it seems that classical optics
simulations are limited to quantumwalks on lattices.We impose no such constraints,
allowing for the simulation of QWs on arbitrary graphs.

67
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Conductance Bound for QuantumWalks. In Theorem 4 we show how invariant
stochastic processes, in particular quantum walks and lifted Markov chains, have
a mixing time τ ∈ Ω(1/ΦG,π). Thereto we prove that the LMC simulator from
Theorem 3 obeys a conductance bound.

Conductance bounds for lifted Markov chains were already proven in the early
LMC paper by Chen, Lovász and Pak [9]. We however relax their definition of
LMC mixing in two ways, preventing the direct use of their result on our LMC
simulator. First of all, they require that an LMC mixes on the lifted state space
V̂, whereas we only care about mixing of the marginal distribution onV (that is,
after applying the marginalization map f ). An LMC can therefore be periodic and
still mix, as is the case for our LMC simulator. Secondly, they consider the worst
initial state over the entire lifted state space V̂. Since we allow initialization of
V̂ through the initialization map F, we only consider the worst initial state in the
image Im(F) ⊂ V̂. We show that these relaxations still allow for a conductance
bound on the mixing time, provided that the resulting LMC is invariant. In the
below Section 6.3 we give some further insight in this invariance condition. In
more recent work, Ramanan and Smith [93] prove similar conductance bounds for
continuous time LMCs.

Conductance bounds for quantum walks have been discussed in the early paper
by Aharonov et al [15] and a more recent paper by Temme et al [51]. As a main
difference, both papers are limited to unital quantum walks. This is a subclass
of quantum walks where at each time step a random unitary operator from a set
{Uk} is applied, according to some distribution p over the set. This results in a
Kraus map Ψ[ρ] =

∑
p(k)Uk ρU†

k
. Such quantum walks necessarily converge to

the uniform distribution over V̂, hence limiting the possible limit distribution over
V. The proof in [15] takes a geometric approach, akin to the proof of the Markov
chain conductance bound given in Proposition 3. To do so they strongly rely on
the unitarity of the evolution, and we see no direct way of extending their proof
to general quantum walks. We note that for the special case to which their bound
applies, our bound reproduces their bound, as shown in the following lemma.

Lemma 6. For a uniform distribution π, it holds that ΦG,π ≤ Φ
′.

Proof. Let P be any Markov chain on G that mixes to the uniform distribution, and
let S be any subset. We see that

ΦP(S) =

∑
i∈S, j∈Sc P( j, i)π(i)

π(S)

=

∑
i∈S, j∈Sc P( j, i)

|S|
≤

∑
j∈∂Sc 1
|S|

=
|∂Sc |

|S|
,

where the inequality follows from the fact that
∑

i∈S, j∈Sc P( j, i) =
∑

i∈S, j∈∂S P( j, i)
and

∑
i∈V P( j, i) = 1 since the stationary distribution of P is the uniform one. So

for any subsetS andMarkov chain P with a uniform stationary distribution, it holds
thatΦP(S) ≤ |∂S|/|S|. This implies thatΦ(P) ≤ Φ′ and thereforeΦG,π ≤ Φ

′. ut

The proof in [51] takes a very different approach, estimating the mixing time of
a unital quantum walk using estimates on the spectral gap of the dynamics. They
consider a unital quantum walk defined by the Kraus map Ψ[ρ] =

∑
p(k)Uk ρU†

k
,
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and associate a “symmetrized map” Ψ̃[ρ] =
∑

k,l p(k)p(l)U†
l
Uk ρU†

k
Ul . They then

show that the mixing time of Ψ can be bounded by

τ ≥

(
min

0< |S |≤ |V |/2
tr((I −ΠS)Ψ̃(ΠS/|S|))

)−1
. (6.1)

In words, the right hand side denotes the probability of being in Sc , when starting
from the stationary state on S. When minimized over all unital quantum walks
this gives the same lower bound as our bound, be it restricted to unital quantum
walks having a uniform stationary distribution. Their proof relies strongly on the
unitarity of the quantum dynamics, and they explicitly mention that there seems
no direct way to extend their results to non-unital quantum walks. Interestingly,
their technique does allow to prove a converse upper bound for unital quantum
walks using a quantity similar to the above one, extending the bound presented in
Proposition 4 to unital quantum walks.

6.2 Infinite Graphs

Our results prove that quantum walks cannot accelerate mixing over classical
Markov chains with memory, provided that no further restrictions are put on con-
struction or resources. This shows that observing an improved mixing behavior in
some physical system can not be diagnostic for quantum effects, as we discussed
at the end of Chapter 4. The basis of these results was the similarity between the
Hadamard quantum walk in Example 6 and the LMC in Example 5, both quadrati-
cally accelerating the random walk mixing time on the cycle ZN . Considering the
same quantum walk on the infinite line Z allows to uncover a caveat to our result,
provided that we relax the definition of mixing time.

We consider the situation as presented in one of the initial quantum walk papers
by Ambainis et al [14], studying the Hadamard quantum walk on the infinite line
graph Z. They are interested in a property that we will call linear mixing, where a
stochastic process {Γt } is linear mixing if and only if there exists a constant δ < 1
such that for all t sufficiently large it holds that

‖Γt [e0] − πt ‖TV ≤ δ,

where πt denotes the uniform distribution over [−t, t] ⊂ Z. In words this means
that for all t sufficiently large, the distribution Γt [e0] will have some nonnegligible
correlation with the uniform distribution πt over [−t, t]. As an example, a random
walk on Z, whose distribution converges to a normal distribution with standard
deviation in O(

√
t), is not linear mixing. To see this it suffices to note that the

probability of finding this walk outside the interval [−
√

t log t,+
√

t log t] is in
O(1/t). This implies that ‖Γt [e0] − πt ‖TV → 1.

In [14] the following proposition is proved about the Hadamard quantum walk,
defined in Section 2.2.

Proposition 10 ([14]). The Hadamard quantum walk is linear mixing.
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It follows from our results on QW simulation that there exists a lifted Markov
chain that simulates the Hadamard walk on Z, and is hence linear mixing, yet
it requires an infinitely large auxiliary register or memory. If we require that the
memory remains finite, then we can prove that no translationally invariant lifted
Markov chain is linear mixing.

Proposition 11. There exists no translationally invariant lifted Markov chain, hav-
ing a finite memory, that is linear mixing.

Proof. Let P̂ be a translationally invariant LMC that describes the probability
distribution of a random variable (Xt, Zt ) ∈ V̂ = {1, 2, . . . , κ}×ZN , for some finite
memory size κ ∈ Z. If (X0, Z0) is distributed according to some distribution v0, then
(Xt, Zt ) will be distributed according to vt = P̂tv0. By the translational invariance
of the LMC we know that

P((Xt+1, Zt+1) =(k ′, z′) | (Xt, Zt ) = (k, z))

= P((Xt+1, Zt+1 − Zt ) = (k ′, z′ − z) | Xt = k),

where by locality we know that Zt+1 − Zt ∈ {0,±1}. This equality shows that
we can describe the dynamics using an associated Markov chain (Xt+1,Yt+1) =
(Xt+1, Zt+1 − Zt ), with Yt ∈ {0,±1}, and simply set Zt = Z0 +

∑t
l=1 Yl . If the LMC

starts in the origin, Z0 = 0, then Zt =
∑t

l=1 Yl and so we can focus on this sum of
the random variable Yl .

First assume that the Markov chain Wt = (Xt,Yt ) is irreducible with a stationary
distribution π, so that we can apply the central limit theorem for Markov chains
[94, 95]:

1
√

t

( τ∑
l=1

h(Wl) − Eπ(h)
)

d
→ N(0, σ2

h ),

for any bounded function h, withEπ(h) the expectation of h with respect to distribu-
tion π and σh some finite constant that can be bounded as a function of the Markov
chain hitting times. Setting h(Wl) = Yl , this shows that Zt/

√
t =

∑t
l=1 Yt/

√
t weakly

converges to a normal distribution with a bounded variance and mean
√
τEπ(h).

As a consequence, for any ε > 0 there exists some c such that

lim
t→∞
P(|Zt −

√
τEπ(h)|/

√
t ≥ c) = lim

t→∞
P(|Zt −

√
τEπ(h)| ≥ c

√
t) ≤ ε .

With pt = f (vt ) describing the marginalized probability distribution of Zt , we can
use the operational definition ‖pt − πt ‖TV = maxS⊂Z |pt (S) − πt (S)| to bound

‖pt − πt ‖TV ≥ pt ([−k, k]) − πt ([−k, k]) ≥ 1 − ε − 2k/t,

with k = bc
√

tc. For any δ < 1, we can therefore find an ε and a t0 such that if
t ≥ t0 then ‖pt − πt ‖TV > δ. This implies that the LMC cannot be linear mixing.
In the remaining case that the Markov chain Wt = (Xt,Yt ) is reducible, we can
make use of the case that any finite, reducible Markov chain converges to a finite
mixture of irreducible Markov chains. Applying the above reasoning for each of
these irreducible Markov chains proves the proposition. ut
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The proof shows that any such LMC weakly converges to a finite mixture
of normal distributions, moving with different drift velocity. This proves a clear
distinction between quantum walks and lifted Markov chains. If restrictions can be
put on the memory of an LMC in a certain setting, it should be possible to estimate
from which time scale it should start behaving diffusively. Superdiffusive behavior
could then serve as a signaler for quantum behavior.

As an interesting side remark, note that if we consider the Cesaro average of a
Markov chain then this result no longer holds. Indeed, the Cesaro average of a walk
that deterministically moves to the left or to the right will already be linear mixing.
This highlights the gain that a Cesaro average can induce.

6.3 Breaking Invariance and the Conductance Bound

The invariance of quantum walks and stochastic processes is a crucial clause to our
results, whose discussion we have so far omitted. Recall that the invariance of a
stochastic process {Γt }, mixing to some distribution π, requires that

Γt [π] = π, ∀t ≥ 0.
In other words, if the process starts in its limiting state, it stays there. This condition
is naturally fulfilled in most mixing schemes, where the dynamics have a stabilizing
or contracting effect towards some minimal energy or maximal entropy state.
As such, the limit distribution is effectively a stationary or equilibrium state of
the dynamics. Indeed, it is automatically fulfilled for time-independent classical
Markov chains and time-independent quantum walks or quantum Markov chains
that mix to a classical distribution (diagonal density matrix), as well as for their
time averages. Furthermore, it is also naturally satisfied on any vertex-transitive
graph, where the dynamics do not break the symmetry. From a design perspective,
invariance of a mixing scheme is an important resource that allows to amplify the
closeness to the target distribution: it allows to design and run a scheme up to a
certain threshold (e.g., mixing up to TV-distance 1/4), and then simply reiterate
this scheme, leading to exponential convergence. This is exactly what we prove in
Lemma 4, which extends the amplification lemma 1 to general invariant stochastic
processes. As a byproduct, such amplified process is to some extent resilient to
errors: if at some point an error occurs in the dynamics (a broken link, a skipped
time step), then the contractive nature of the dynamics will wash this away.

Contrarily, and this is the main point of this section, we can show that if invari-
ance does not hold, and no alternative restrictions are imposed, then no conductance
bound holds. Indeed, we can show that in this case the trivial diameter bound be-
comes tight. Specifically, for any graph G with diameter D, and distribution π
having full support, we can construct a lifted Markov chain that exactly mixes to π
in D steps, which is the absolute lower bound for any local process by the diameter
lower bound from Proposition 2. Thereto we build on the following proposition
from [96], proven in the rather different context of Schrödinger bridges for max-
imum entropy problems. It states the existence of stochastic bridges of diameter
length that connect any two distributions over a graph. The effective construction
of these stochastic bridges is discussed in [97].
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Proposition 12 ([96]). For any graph G with diameter D and distributions v and
v′ such that v′ > 0, there exists a stochastic bridge {P(v,v

′)
t ∼ G | 1 ≤ t ≤ D} such

that
P(v,v

′)

D P(v,v
′)

D−1 . . . P(v,v
′)

1 v = v′.

We can combine these stochastic bridges into a local stochastic process {Γt ∼ G}
by setting

Γt [ei] =

{
P(i,π)t P(i,π)

t−1 . . . P(i,π)1 ei t ≤ D
P(i,π)D P(i,π)

D−1 . . . P
(i,π)
1 ei = π t > D,

and extending it to arbitrary distributions by linearity. This stochastic process is
local by the locality of the transition matrices. Exactly like in Section 4.2, we
can combine these stochastic bridges in the LMC simulator (4.2). As stated in
Proposition 6, this leads to an LMC that simulates the stochastic process defined
above, resulting in the following proposition.

Proposition 13. For any graph G with diameter D and distribution π > 0, we can
construct an LMC P̂D that mixes exactly to π in D steps: for any distribution v and
all t ≥ D it holds that

( f ◦ P̂t
D ◦ F)[v] = π.

By our conductance bound, the above LMC cannot be invariant in general.
Indeed, consider for instance our example of the randomwalk stationary distribution
π over the binary treeT2,k , discussed in Section 5.2. This graph has a diameter 2k, yet
it has a conductanceΦG,π ∈ Θ(1/2k). Our conductance bound in Theorem 4 hence
proves that any invariant LMC has a mixing time τ ∈ Ω(2k). The LMC constructed
in the above proposition has an exponentially lower mixing time τ ∈ Θ(k), and
therefore cannot be invariant.

The above proposition shows that indeed the invariance of a stochastic process
is a necessary condition for the existence of a conductance bound, rather than it
being an artifact of the proof. Moreover, we discussed how it is in fact a natural
property of equilibrating dynamics, and is a useful resource for the design ofmixing
schemes, allowing to exponentially amplify the closeness to a goal distribution and
make a scheme resistant to errors.

6.4 Outlook

To recapitulate, we have proved that for any invariant stochastic process, quantum
walks in particular, we can construct a liftedMarkov chain that has the samemixing
time. By bounding the mixing time of this lifted Markov chain, we were able to
prove a conductance bound on the mixing time of the original process, which is
tight up to a log factor. The lift construction should be interpreted as an existence
result, since its construction time and local memory size (size of the coin) scale as
a polynomial in |V|, the size of the graph.

Efficient Constructions. The main open question is the existence of efficiently
constructible quantum walks and lifted Markov chains that accelerate the simple
Markov chain mixing time. The existence of such constructions for quantum walks
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on regular graphs, where every node has the same degree, was conjectured more
than 10 years ago in [45]. Currently however the only known efficient quantumwalk
and lifted Markov chain constructions either rely strongly on the symmetry of the
graph [8, 9, 15, 38, 39, 45], the examples being limited to Cayley graphs of Abelian
groups, or require additional resources such as an approximation of the stationary
state or a sequence of slowly varying Markov chains [40, 42, 43]. An intermediate
question that we could address is whether for any bounded degree graph there even
exists a quantum walk or lifted Markov chain that reaches the conductance bound
(possibly up to a log factor) with a memory size polynomial in log |V|. This seems
like a necessary condition for their efficient construction. Especially in the case of
lifted Markov chains we feel that this is a manageable question, maybe building on
the techniques from [7] used to show that no simple Markov chain on the cycle can
reach the conductance bound.

Relaxing Invariance. A second open question relates to the invariance condi-
tion. From the former section we know that if we drop the invariance condition,
and impose no alternative constraint, diameter time mixing becomes possible for
LMCs and quantum walks. In the second part of this thesis we will treat a “com-
putationally feasible” quantum walk algorithm that is not invariant, and mixes in
Θ(
√

2k) steps on the binary tree T2,k . This breaks the Ω(2k) conductance bound
discussed in Example 11, yet it is still exponentially larger than the diameter. Can
we impose some intermediate condition, less stringent than invariance, for which
this is optimal? Related to this is the running conjecture, stated for instance in [45],
that quantum walks can always quadratically speed up random walks (up to maybe
a log factor). This points to a lower bound Ω̃(√τRW ) that lies intermediate between
our conductance bound and the trivial diameter bound.

Another interesting example where invariance is explicitly broken is simulated
annealing [73]. This is often applied in cases where probabilities reflect a cost
function with many local minima, so that the Markov chain can easily get stuck
and take a long time to converge to the correct distribution. Simulated annealing
provides a remedy where a time-dependent sequence ofMarkov chains is proposed,
whose transition probabilities and stationary distributions converge gradually to
the goal distribution, but where the local minima and related irregularity in the
distribution only shows up progressively towards the end of the sequence. Simulated
annealing is especially relevant in cases where the main slowdown is caused by the
goal distribution π and its irregularities, rather than by some graph locality which
is fixed, as we are mainly considering. We leave it as an open question whether our
techniques can be extended to this setting.

Improving Results. Our results can certainly be enhanced in different places.
The following are some relevant questions:

• For every graph G and stationary distribution π, the conductance bound τ ∈
Ω(1/ΦG,π) is an “absolute lower bound”. The bound only depends on G and π
and is thus equal for all quantumwalks and liftedMarkov chains overG thatmix
to π. Contrarily, the original conductance bound τ ∈ Ω(1/Φ(P)) ⊂ Ω(1/ΦG,π)

for some Markov chain P depends on the specific Markov chain, and a poorly
chosen Markov chain will have a larger upper bound than a better chosen one.
We believe that a similarly improved bound should hold for quantum walks,
depending not only on G and π but also in an intuitive way on the specific
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structure of the quantum walk. The result from [51] in (6.1) is an example of
such a result, be it restricted to unital quantum channels.

• The graph conductance

ΦG,π = max
P∼G:Pπ=π

ΦP

is defined somewhat elusively, requiring a maximization over Markov chains.
We have shown that it can be efficiently bounded (5.1), yet this bound is not
tight. Can we find a closed form for ΦG,π?

Cheeger Inequalities. Finally we mention a recent surge of results, see [98, 99]
and references therein, in which conductance bounds are used to estimate the
spectral gap of Hermitian matrices. Since the spectral gap is closely related to the
mixing time of the associated dynamics, it seems possible to apply our results to
these issues.



2nd Part: Fast-Forwarding



In the first part of this thesis, we askedwhetherMarkov chains can simulate quantum
walks.We showed that for any quantumwalk there exists aMarkov chainwith added
memory, called a liftedMarkov chain, that simulates andmatches the quantumwalk
mixing dynamics. As early as 1998, Watrous [1] posed the opposite question of
whether quantum walks can be used to quantum simulate Markov chains. For a
Markov chain P and initial distribution v, quantum simulation denotes creating the
quantum state |Ptv〉 associated to the classical distribution Ptv. It is defined by

|Ptv〉 =
1
‖Ptv‖

∑
(Ptv)( j) | j〉. (6.2)

For a general nonzero vectorw, wewill use the notation |w〉 = 1
‖w ‖

∑
w( j)| j〉which

associates a quantum state |w〉 to w, with the prefactor ensuring that the quantum
state |w〉 is normalized, ‖|w〉‖ = 1. Note the crucial difference with the trivial
simulation discussed in Section 2.3, Example 7, where we showed how a quantum
walk can create the classical distribution Ptv. Indeed creating the quantum state
|Ptv〉, a task commonly referred to as quantum state generation [40], is generally
much more difficult than creating Ptv. The generation of such quantum states is
an important resource for quantum algorithms such as quantum search [21, 100],
quantum machine learning [101], and state comparison [40]. Watrous constructed
a unitary quantum walk operator from P, inheriting the same locality structure as
P, that allows to generate |Ptv〉 with success probability ‖Ptv‖2, requiring t QW
steps. His main goal was to prove that random walk algorithms, representative for
the class of space-efficient randomized classical computations, could be simulated
in a space-efficient way on a quantum computer, without the need for intermediate
measurements.

In this thesis part we show that we can perform this quantum simulation quadrat-
ically faster, proving that quantum walks can quadratically fast-forward a general
reversible Markov chain. The reversibility condition is crucial here, showing for
instance that the LMC simulators from previous section cannot be fast-forwarded
in this way. We build on the work of Ambainis [4] and Szegedy [3] that took inspi-
ration from the work of Watrous. They use quantum walks in a different context,
namely for speeding up search problems on graphs. The gist of our results is that
we can apply these speedup techniques to the original problem of quantum simula-
tion, giving rise to a technique that we call quantum fast-forwarding (QFF). For a
symmetric Markov chain P (we consider general reversible MCs in the main text),
QFF allows to generate the state |Ptv〉 with the same success probability ‖Ptv‖2 in
O

(√
t log ‖Ptv‖−1) QW steps. This is a quadratic acceleration, up to a log-factor.

Much of the previous work that builds on the Ambainis-Szegedy quantum walk
scheme, such as [3, 21, 22, 41, 42], relies on a quadratic acceleration of the limit
behavior of the original Markov chain. Our result, however, allows to capture and
accelerate the intermediate dynamics.

In Chapter 9 we discuss how QFF very naturally allows to accelerate random
walk algorithms for graph property testing. The latter was initiated by the seminal
work of Goldreich, Goldwasser and Ron [102]. The goal is determine whether some
given graph either has a certain property, such as bipartiteness or a large expansion,
or is far away from having that property. This is a rewarding relaxation with respect
to the much more difficult problem of deciding whether a given graph has that



property, typically leading to algorithms that are sublinear in the size of the graph.
We first consider the Goldreich-Ron algorithm [103] for testing whether a graph
has large expansion or not, and show how QFF allows to quantize and accelerate
this algorithm very naturally. Second we consider the more recent line of testing
clusterability of a graph [104, 105]. These algorithms allow to classify nodes of
appropriately clustered graphs, solving a robust version of s-t connectivity which
is also relevant outside of the setting of property testing. We again show how QFF
leads to an immediate quantum speedup for these algorithms.

In the final Chapter 10 we discuss some more applications of QFF. First we
demonstrate how QFF allows to escape large sets on a graph quadratically faster
than classical walks. This is a new result which connects to a long line of research on
quantum walk algorithms for search problems [3, 19, 21, 106, 107]. We show how
our new result allows tomake progress on the open problem of hitting large sets.We
also discuss a direct application of QFF to the problem of quantum state generation,
as proposed in [40]. Here we are given a classical algorithm that samples according
to some distribution π, and the task is to create the corresponding quantum state
|
√
π〉 =

∑√
π( j)| j〉. Most existing algorithms [40, 41, 108] assume that π is given

as the stationary distribution of a Markov chain. We show how QFF can solve this
problem in situations where this is not the case, for instance when π is described
as an intermediate rather than a limit state of a Markov chain.



Chapter 7
Quantum Simulating Markov Chains

In the coming chapter we mainly review the work by Watrous on quantum simulat-
ing Markov chains. This work was one of the earliest proponents and inspirations
for the large field of quantum walk algorithms. It lies at the basis of our further
constructions.

7.1 Watrous Scheme

In Section 2.2 we already discussed that quantum walks must in general be defined
on lifted graphs, where for instance some coin space is added to the original graph.
Watrous [1] resolved this issue by generically appending an extra node register to
the graph. Although not strictly necessary, we will also add an “initialization” state
{[} to the extra register. The new node space thus becomes

V̂ = V × {[,V} = {(i, j) | i ∈ V, j ∈ {[,V}}.

It will be useful to identify the ordered pairs inV×V with directed graph edges, as
shown on the left in Figure 7.1. The associated Hilbert space isH = H[ ⊕HV×V ,
with “⊕” the direct sum. We will call

H[ = span{|i, [〉 | i ∈ V}

the flat subspace, with associated projector Π[ = I ⊗ |[〉〈[|. Similar to the lifted
Markov chain and quantum walk on the cycle that we introduced in the first thesis
part, the quantumwalk onH is defined by a shift and a coin toss operator. Note that
these operators are slightly adapted fromWatrous’, generalizing them from random
walks to general Markov chains, and allowing for a better streamlining with further
constructions.

1. Coin toss V =
∑

i |i〉〈i | ⊗ Vi: local action on the coin space. Conditioned on
the current node, which is held in the first register, the coin toss implements
the operator Vi on the coin space:

V |i, ψ〉 = |i〉 ⊗ Vi |ψ〉.

78
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By the design of the QW, as we will see later, it suffices to characterize the
action of Vi on the state |[〉, which we define as

V |i, [〉 = |i〉 ⊗ Vi |[〉 = |i〉 ⊗ |ψi〉 = |i〉 ⊗
∑
j

√
P( j, i)| j〉. (7.1)

This maps a state |i, [〉 to a superposition over the outgoing edges which
is defined by the original Markov chain. We show |i, ψi〉 in the middle of
Figure 7.1. The operators Vi can be completed into a unitary matrix by setting

Vi = |ψi〉〈[| +
∑
j

|ψ⊥i, j〉〈 j |, (7.2)

where the states |ψ⊥i, j〉 are chosen such that {|ψi〉, |ψ
⊥
i,1〉, . . . , |ψ

⊥
i, |V |
〉} forms an

orthonormal basis. By its definition, this implies that also V will be unitary.
2. Shift S: defined by the permutation

|i, j〉 7→ S |i, j〉 =

{
| j, i〉 (i, j) ∈ E
|i, j〉 otherwise,

and S |i, [〉 = S |i, [〉. This operator performs the actual walk, hopping from
node i to node j. We illustrate this on the right of Figure 7.1.

Fig. 7.1 Figure demonstrating the Watrous QW scheme. (l) A basis state |i, j 〉 ∈ V̂ can be identified
with the directed edge (i, j). (m) The coin toss V maps an initial state |i, [〉 to a superposition of
outgoing edges. (r) The shift S maps a state |i, j 〉, localized on node i, to a state | j, i〉, localized on
node j.

These operators closely resemble the shift and coin toss operators that we used to
define the lifted Markov chain and quantum walk on the cycle. The final form of
the quantum walk is

UP = V†SV . (7.3)

We will often write U instead of UP when the context allows it. Note that this
form deviates from the “coined QW” that we introduced in the first thesis part. It
is however still a local QW, as we prove in the below lemma.

Lemma 7. If P is local with respect to a graph G (P ∼ G) then UP is local with
respect to G (UP ∼ G).
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Proof. Since V is of the form V =
∑
|i〉〈i | ⊗Vi , and hence also V† =

∑
|i〉〈i | ⊗V†i ,

these operators only work on the auxiliary register, performing a local coin toss.
The shift operator S performs the actual walk, yet it only maps states |i, j〉, localized
on node i, to states | j, i〉, localized on node j, if (i, j) ∈ E. ut

It will be instrumental to analyze the working of U on an initial state |i, [〉 in
H[. We can show that

U |i, [〉 =
∑
j

√
P(i, j)P( j, i)| j, [〉 + |ψ⊥〉, (7.4)

where |ψ⊥〉 is some state perpendicular to the flat subspaceH[. To see this, we first
directly apply the definition of V and S to see that

SV |i, [〉 = S |i, ψi〉 =
∑
j

√
P( j, i)| j, i〉.

Towards the analyzing the action of V†, notice that V† =
∑
|i〉〈i | ⊗ V†i and from

(7.2) we can write V†i = |[〉〈ψi | +
∑

j | j〉〈ψ⊥i, j |, so that

V†SV |i, [〉 =
∑
j

√
P( j, i)| j〉V†j |i〉 =

∑
j

√
P( j, i)〈ψj |i〉| j, [〉 + |ψ⊥〉.

By definition of |ψi〉, this proves the expression in (7.4).
From this, the below proposition by Watrous is immediate. It shows that the

restriction of U to the flat subspace implements the discriminant matrix

D =
√

P ◦ PT ,

with the square root and product elementwise. We introduced this matrix earlier in
Chapter 1. It is closely related to the original Markov chain P, and if P is reversible
then they share the same eigenvalues. If P is symmetric, as was the case inWatrous’
original setting of random walks on regular graphs, then D = P. In the following
we write D |v, [〉 as shorthand for (D ⊗ I)|v, [〉.

Proposition 14. For any |v, [〉, it holds that

Π[U |v, [〉 = D|v, [〉.

That is, if we perform a measurement {Π[, I − Π[} on the state U |v, [〉 and the
outcome is “[”, we retrieve the state |Dv, [〉.

Proof. From (7.4) we see that Π[U |i, [〉 = D|i, [〉. By linearity, the proposition
follows for general |v, [〉. ut

We see that the quantum walk U maps a state |v, [〉 to a “good part” Π[U |v, [〉 in
the same flat subspace, and a part (I −Π[)U |v, [〉 that we wish to reject.
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7.2 Quantum Simulation Algorithm

The straightforward way of retrieving the good part Π[U |v, [〉 = D |v, [〉 of the
quantum walk evolution is by performing a projective measurement {Π[, I −Π[}

on the state U |v, [〉. The measurement returns the quantum state |Dv, [〉 with prob-
ability

P([) = ‖Π[U |v, [〉‖2 = ‖D |v〉‖2.

To simulate over multiple steps we can reiterate this scheme on its output, yield-
ing the below quantum walk simulation algorithm. The scheme has a success
probability ‖Dt |v〉‖2, as we show below. Later on, in Section 8.4, we will use
a quantum search algorithm to quadratically improve this success probability to
‖Dt |v〉‖. We also mention that in the original paper, Watrous proposed a somewhat
more advanced scheme that allowed to perform quantum simulation without the
intermediate measurements, at the cost of introducing an additional register of size
log t.

Algorithm 1 Quantum Simulation QS(|v〉, P, t)
Input: quantum state |v〉 ∈ HV , Markov chain P, t ∈ N
Do:
1: initialize the registers R1R2 with the state |v, [〉
2: for l = 1 to t do
3: perform the quantum walk UP on R1R2
4: perform the measurement {Π[, I −Π[}

5: if outcome , “[” then output “Fail” and stop
6: end for

Output: registers R1R2

Complexity: t QW steps Success probability: ‖Dt |v〉‖2

Lemma 8. QS(|v〉, P, t) outputs the state |Dtv, [〉with success probability ‖Dt |v〉‖2.
Otherwise it outputs “Fail”. The algorithm uses t QW steps.

Proof. Assume that the algorithm has been successful for l iterations of the for-
loop. Then the state in registers R1R2 is

|Dlv, [〉 =
1

‖Dl |v〉‖
Dl |v, [〉.

By the former reasoning, applying UP and the measurement {Π[, I −Π[} on this
state returns the state |Dl+1v, [〉 with a probability

Pl+1([) = ‖Π[U |Dlv, [〉‖2 =
‖Dl+1 |v〉‖2

‖Dl |v〉‖2
. (7.5)

This represents the success probability of the (l + 1)-th iteration. The total success
probability over t iterations therefore becomes
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Pt ([)Pt−1([) . . . P1([) =
‖Dt |v〉‖2

‖Dt−1 |v〉‖2
‖Dt−1 |v〉‖2

‖Dt−2 |v〉‖2
. . .
‖D|v〉‖2

‖|v〉‖2

= ‖Dt |v〉‖2,

using that the initial state is a normalized quantum state ‖|v〉‖ = 1. ut

In the following example we illustrate the use of this scheme to create superpo-
sitions over the nodes of a graph.

Example 12 (Creating Superpositions). Consider an ergodic symmetric Markov
chain P on a graph G = (V, E). This random walk will converge to its stationary
distribution π, which is the uniform distribution over the node set. We can use the
above defined scheme to simulate this Markov chain and retrieve the corresponding
quantum state |π〉, a uniform superposition over the node set.

By Lemma 8, and since D = P for a symmetric transition matrix, we can create
the state |Pt i, [〉 with probability ‖Pt |i〉‖2 using t QW steps. For t sufficiently large,
this statewill closely approximate the uniform superposition |π〉. To see this, we first
bound the 2-norm by the 1-norm so that ‖Pt |i〉−π‖ ≤ ‖Pt |i〉−π‖1. By the definition
of the ε-mixing time τ(ε) we know that ‖Pt |i〉 − π‖TV =

1
2 ‖P

t |i〉 − π‖1 ≤ ε ′ if
t ≥ τ(ε ′). Now we can bound ‖|Pt i〉 − |π〉‖ using the elementary fact that for any
two nonzero vectors v and w it holds that v

‖v‖
−

w

‖w‖

 ≤ 2‖v − w‖
max(‖v‖, ‖w‖)

. (7.6)

As a consequence, ‖Pt |i〉−π‖ ≤ 2ε ′ implies that ‖|Pt i〉− |π〉‖ ≤ 4ε ′
‖π ‖ . If we choose

ε ′ = ‖π ‖4 ε , then we see that

‖|Pt i〉 − |π〉‖ ≤ ε, ∀t ≥ τ(ε ′).

We can similarly bound the success probability ‖Pt |i〉‖2. If ‖Pt |i〉 −π‖ ≤ 2ε ′, then
by the reverse triangle inequality we know that

‖Pt |i〉‖2 ≥ (‖π‖ − 2ε ′)2 = (1 − ε)2‖π‖2.

Since ‖π‖2 =
∑

j
1
|V |2
= 1
|V |

, the success probability becomes (1 − ε)2/|V|.
In summary, running QS(| j〉, P, t) for t = τ(ε ′ = ‖π‖ε/4) returns a state |Dt j〉

ε-close to the uniform superposition |π〉 with success probability (1 − ε)2/|V|,
requiring τ(ε ′ = ‖π‖ε/4) QW steps. Using Lemma 1, we can bound τ(ε ′ =

‖π‖ε/4) ∈ O(τ log |V |ε ) QW steps, with τ the mixing time of the Markov chain.
The total expected runtime for creating a state ε-close to the uniform superposition
can thus be bounded by O(τ |V| log |V |ε ). On for example the cycle ZN , having
τ ∈ Θ(N2), this comes down to O

(
N3 log N

ε

)
QW steps. 4

This summarizes the main contribution from [1] that will be of interest to us:
quantum walks allow to create the state |Dtv〉, with success probability ‖Dt |v〉‖2,
using t QW steps. In the next section we will show that we can quadratically
accelerate this scheme: it is possible to create the state |Dtv〉, with a success
probability Θ(‖Dt |v〉‖2), using O(

√
t) QW steps.



Chapter 8
Quantum Fast-Forwarding

Watrous’ scheme shows that quantum walks can quantum simulate Markov chains.
He used this result to prove that a quantum computer can simulate the broad class of
classical random walk algorithms in a unitary, space and time efficient way. Key to
his scheme is to isolate after every step the “good” part of the evolution Π[U from
interfering with its complement. This can be done by interspersing measurements,
as we discussed, and Watrous showed in his original paper that this can also be
done by keeping an extra time register. This elimination of interference of the good
part ensures that the quantumwalk evolution keeps in line with the original Markov
chain.

In subsequent work, Ambainis [4] ingeniously showed that these interference ef-
fects, avoided in the simulation schemes, can actually lead to speedups on classical
algorithms. Indeed he used a quantum walk to show that the element distinctness
problem, deciding whether there exist two equal elements in a list of N elements,
can be solved inΘ(N2/3) queries to the list, which is optimal and improves over the
classical optimum of Θ(N) queries. Earlier attempts based on amplitude amplifi-
cation required a suboptimal Θ(N3/4) queries [109]. The quantum walk techniques
leading to this optimal speedup were formalized more generally by Szegedy in [3].
They lie at the basis of an impressive stream of quantum algorithms for problems
such as triangle finding [18], matrix product verification [110], quantum state gen-
eration [41, 42], Hamiltonian simulation [111], andMarkov chain hitting on graphs
[21, 22].

In the coming chapter we show that we can actually apply these quantum walk
speedup techniques to the original problem of quantum simulating Markov chains.
The simulation schemes introduced in the previous chapter take t quantum walk
steps to simulate a Markov chain over t steps, with a certain success probability.
Taking inspiration from the above quantum walk speedup techniques, we show that
this can in fact be done quadratically faster. We construct a quantum algorithm
that requires Õ(

√
t) quantum walk steps to simulate a Markov chain over t steps,

with the same success probability. We call this technique quantum fast-forwarding
(QFF), and it is the main conceptual contribution of this thesis part. In the first
section we will introduce the quantum walk speedup techniques from Ambainis
and Szegedy. In the second and third section we apply these techniques to the
quantum simulation problem, and show how they lead to our QFF algorithm. In

83
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the final section we demonstrate how we can use amplitude amplification, the
generalization of Grover’s quantum search algorithm, to quadratically improve the
success probability of both the QFF algorithm and the original quantum sampling
algorithm.

8.1 Ambainis-Szegedy Scheme

Recall the Watrous quantum walk scheme associated to a Markov chain P. It is
defined by the quantum walk operator U = V†SV on the lifted node set V̂ =
V × {V, [}, with coin toss operator V mapping |i, [〉 to

V |i, [〉 = |i, ψi〉 =
∑
j

√
P( j, i)|i, j〉

and shift operator S defined by S |i, j〉 = | j, i〉 for (i, j) ∈ E and the identity
elsewhere. We proved that

D |v, [〉 = Π[U |v, [〉,

with D =
√

P ◦ PT the discriminant matrix, and we used this to quantum simulate
the original Markov chain P.

In the work by Ambainis [4], generalized and formalized by Szegedy [3], an
alternative quantum walk operator is proposed:

W = R[U = (2Π[ − I)U,

where R[ = 2Π[ − I is the reflection operator around the flat subspace. The critical
insight in Szegedy’s work stemmed from the fact that we can rewrite

W2t = V†
[ (

V R[V†
) (

SV R[V†S
) ] t

V = V†
[
RψRSψ

] tV .
Therefore, for all even t and up to the unitary transformation V , the quantum walk
W comes down to a product of two reflections Rψ = 2VΠ[V†− I, reflecting around
the subspace spanned by the states |i, ψi〉, and RSψ = 2SVΠ[V†S − I, reflecting
around the subspace spanned by the states S |i, ψi〉. This product of reflections allows
for a geometric analysis, and led to Szegedy’s characterization of the spectrum of
W . An interesting side note is that his result, describing the spectral properties of
such a product of reflections, had already been proven in an 1875 paper by Jordan
[112]. Since we only need part of his theorem, stated in the below proposition, we
can provide a new proof which is more straightforward. We will denote by Tt the
t-th Chebyshev polynomial of the first kind, and by Tt (D) the polynomial in the
discriminant matrix D.

Proposition 15. For any |v, [〉, it holds that

Π[W t |v, [〉 = Tt (D)|v, [〉.

That is, if we perform a measurement {Π[, I − Π[} on the state W t |v, [〉 and the
outcome is “[”, we retrieve the state Tt (D)|v, [〉/‖Tt (D)|v, [〉‖. As a consequence,
if (cos θ, |v〉) is an eigenpair of D, then

Π[W t |v, [〉 = Tt (cos θ)|v, [〉 = cos(tθ)|v, [〉.
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Proof. We easily find a recursion formula for Π[W t :

Π[W t = Π[R[U(2Π[ − I)UW t−2

= 2Π[U(Π[W t−1) −Π[W t−2,

using the fact that Π[R[ = Π[, and U† = U so that U2 = UU† = I. Since Π[W0 =
Π[ and Π[W = Π[U, this shows that we can express Π[W t as a polynomial in
Π[U.

The Chebyshev polynomials of the first kind Tt are defined by

T0(x) = 1, T1(x) = x, Tt (x) = 2xTt−1(x) − Tt−2(x).

Setting x = Π[U and T0(Π[U) = Π[, this shows that we can express Π[W t as

Π[W t = Tt (Π[U).

From Proposition 14 we know that (Π[U)t |v, [〉 = Dt |v, [〉, and therefore

Π[W t |v, [〉 = Tt (D)|v, [〉.

Using the geometric definition of Tt , Tt (cos θ) = cos(tθ), we see that if D |v, [〉 =
cos θ |v, [〉 then

Π[W t |v, [〉 = Tt (cos θ)|v, [〉 = cos(tθ)|v, [〉. ut

This proposition constitutes the basis from which most of the aforementioned
quantum algorithms depart, and it will be the basis from which this work departs.

The gist of many quantum algorithms builds on the following observation: we
can compare the original action of Dt on an eigenpair (cos θ, |v〉)

Dt |v, [〉 = cost (θ)|v, [〉,

with the action of Π[W t

Π[W t |v, [〉 = cos(tθ)|v, [〉.

Taylor expanding the respective eigenvalue functions gt (θ) = cost (θ) and fs(θ) =
cos(sθ) yields

gt (θ) = 1 −
tθ2

2
+O(t2θ4), whereas fs(θ) = 1 −

s2θ2

2
+O(s4θ4).

Setting s =
√

t, we see that both expressions are equal up to second order in t. This
suggests that the quantum walk quadratically fast-forwards the Markov chain, and
so Π[W

√
t ≈ Π[Dt .

This observation underlies a range of quantum walk speedup results which are
mainly concerned with accelerating the Markov chain asymptotics, where one is
interested in the limit regime limt→∞ Ptv = π and one wishes to approximate the
quantum state |π〉. In these cases, the timescale for the classical Markov chain is for
instance set by the inverse of the spectral gap 1

δ =
1

1−λ2
(for mixing tasks and Gibbs

sampling, see [41, 42]), or by the sum of the inverses
∑ 1

1−λk (for hitting tasks,
see [3]). For these purposes, the low order conclusions from the above expansion
generally suffice to achieve a quantum walk speedup in generating |π〉.
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Themain issuewith the above analysis is that it breaks down for t and eigenvalues
θ such that tθ ≈ 1, and the eigenvalue functions gt (θ) and ft (θ) start to diverge
from each other. Figure 8.1 in the next section shows both functions for

√
tθ ∈ Θ(1).

Since quantum simulation aims to simulate the full dynamics of the Markov chain,
without resorting to any limit behavior, this analysis cuts short. In the following
section we construct a more involved and fine-grained quantumwalk schemewhose
eigenvalue function closely approximates the Markov chain eigenvalue function
gt (θ) for all values of t and θ, without losing the quadratic fast-forward. This will
allow us to effectively fast-forward the full dynamics of the original Markov chain.

8.2 LCU and Chebyshev Truncation

We can create some wiggle room on the implementation of Π[W t , and therefore on
its eigenvalue function, by implementing linear combinations of Π[W t for different
t. A similar approach has been used in for instance [113, 114] for Hamiltonian
simulation and in [115] for optimizing quantum SDP solvers, where they call this
technique linear combination of unitaries (LCU). We extract the below lemma
from this work, and elaborate its details for completeness. Below the lemma we
discuss how it can be used for our purpose

The below lemma shows how to implement a linear combination
τ∑
l=0

qlΠ[W l,

where we assume that ql ≥ 0 and
∑

ql = 1. To do so, we will again enlarge the state
space from HV̂ to HV̂×[τ], with [τ] = {0, 1, 2, . . . , τ}. We will identify |0〉 = |[〉
and call the span of states | j, [, [〉 ≡ | j, [[〉, j ∈ V, the flat subspace ofHV̂×[τ]. The
projector Π[ will either denote the projector on the flat subspace ofHV̂ orHV̂×[τ],
whichever it is will be clear from the context. The construction is very similar to
the Watrous quantum walk scheme. It builds on a coin toss Vq onHV̂×[τ], defined
by the coefficients ql as

Vq |ψ, [〉 =

τ∑
l=0

√
ql |ψ, l〉.

Then the controlled W-operator cW =
∑τ

l=0 W l ⊗ |l〉〈l | is applied which, condi-
tioned on the integer l in the last register, applies the operator W l:

cW Vq |ψ, [〉 = cW
τ∑
l=0

√
ql |ψ, l〉 =

τ∑
l=0

√
qlW l |ψ, l〉.

Finally, as in the Watrous QW, the operator V†q is applied, returning a state

V†q cW Vq |ψ, [〉 =

τ∑
l=0

qlW l |ψ, [〉 + |ψ⊥〉, (8.1)

where |ψ⊥〉 is some quantum state perpendicular to the flat subspace. This leads to
the following lemma, where we set Wτ = V†q cW Vq .
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Lemma 9 (LCU). For any |v, [[〉, it holds that

Π[Wτ |v, [[〉 =

( τ∑
l=0

qlΠ[W l |v, [〉

)
⊗ |[〉 =

( τ∑
l=0

qlTl(D)|v〉
)
⊗ |[[〉.

Implementing the operator Wτ requires O(τ) QW steps.

Proof. From (8.1) we see that

Π[ V†q cW Vq |v, [[〉 =

( τ∑
l=0

qlΠ[W l |v, [〉

)
⊗ |[〉.

Combined with Proposition 15, and by linearity, this proves the equality. In for
instance [46, 111] it is discussed that the operator cW can be implemented in O(τ)
QW steps, and the local coin tosses Vq and V†q require no QW steps. ut

This lemma shows that if we apply the operator Wτ on |v, [[〉, and we per-
form a measurement {Π[, I −Π[}, then we retrieve the state

( ∑τ
l=0 qlTl(D)|v〉

)
⊗

|[[〉/‖
∑τ

l=0 qlTl(D)|v〉‖ with probability ‖
∑τ

l=0 qlTl(D)|v〉‖2. The corresponding
eigenvalue function is then

f̃t (θ) =
τ∑
l=0

ql cos(lθ).

Weare now interested in a choice of the coefficients ql so that f̃t (θ) approximates the
original eigenvalue function gt (θ) = cost (θ). This is exactly what the Chebyshev
expansion does. Indeed, from [116] we know that

xt =
t∑

l=0
plTl(x),

where pl represents the probability that |Xt | = l for Xt a t step random walk on the
infinite line, starting in the origin:

pl = P(|Xt | = l) =


1

2t−1

(
t
t−l
2

)
l > 0, t = l mod 2,

1
2t

(
t
t
2

)
l = 0, t = 0 mod 2,

0 elsewhere.

(8.2)

Again using the geometric definition of the Chebyshev polynomials, Tt (cos(θ)) =
cos(tθ), and setting x = cos(θ), this implies that gt can be exactly expanded into
the eigenfunctions ft :

gt (θ) = cost (θ) =
t∑

l=0
pl cos(lθ) =

t∑
l=0

pl ft (lθ). (8.3)

Using the above lemma we can now choose ql = pl to exactly simulate the original
dynamics. The problem is that in this case τ = t, and implementing Wτ therefore
requires O(t) QW steps, giving no speedup with respect to the simple quantum
simulation scheme. We can resolve this by noting that pl approaches a normal
distribution with variance Θ(t), so that we can approximate it exponentially well
by its support on a O(

√
t) interval, as we elaborate in the below lemma.
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Lemma 10. For any ε > 0, if C ≥ 2 ln(2/ε) then���� cost (θ) −
d
√
Ct e∑
l=0

pl cos(lθ)
���� ≤ ε .

Proof. Let t ′ = d
√

Cte and p>t′ =
∑t

l=t′+1 pl . The proof comes down to bounding
the quantity p>t′ . Indeed, by (8.3) we can easily calculate that���� cost (θ) −

t′∑
l=0

pl cos(lθ)
���� ≤ p>t′,

so that it suffices to prove that p>t′ ≤ ε . We can bound p>t′ since it represents the
probability that |Xt | > t ′ where Xt is a t step random walk Xt . By Hoeffding’s
inequality we know that p>t′ ≤ 2 exp

(
− t ′2/(2t)

)
. For t ′ = d

√
Cte and C ≥ 2 ln 2

ε
this shows that p> d

√
Ct e ≤ ε , which proves the lemma. ut

This lemma shows that it is possible to pointwise approximate the original
eigenvalue function cost (θ), up to error ε , using the truncated Chebyshev expansion

gtτ(θ) =

τ∑
l=0

pl cos(lθ)

for τ ∈ O(
√

t log 1
ε ). We show this function in Figure 8.1 for τ =

√
t and τ = 1.2

√
t.

In the next section we show how this approximation lemma leads to our quantum
fast-forwarding scheme.

1 2 3
0

0.5

1

√
tθ

gt(θ)

f√t(θ)

gt√
t
(θ)

gt
1.2
√

t

Fig. 8.1 Plot showing the different eigenvalue functions for t = 1000. The eigenvalue function f√t (θ) =

cos(
√
tθ), resulting from the Ambainis-Szegedy scheme, only approximates the original eigenvalue

function gt (θ) = cost (θ) closely for
√
tθ sufficiently small. It is clear that the truncated Chebyshev

expansion gt
τ (θ), cutting off the Chebyshev expansion of gt after τ terms, approximates gt increasingly

well for τ = d
√
t e and τ = d1.2

√
t e.
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8.3 Quantum Fast-Forwarding Algorithm

Finally we can propose our quantum fast-forwarding algorithm, which combines
the above results. It builds on the operator Wτ from Lemma 9 with q a truncation
of p as defined in (8.2), so that

Π[Wτ |v, [[〉 =
1

1 − p>τ

τ∑
l=0

plΠ[W l |v, [[〉

=
( 1
1 − p>τ

τ∑
l=0

plTl(D)|v〉
)
⊗ |[[〉.

(8.4)

Algorithm 2 Quantum Fast-Forwarding QFF(|v〉, P, t, ε)
Input: quantum state |v〉 ∈ HV , Markov chain P, t ∈ N, ε > 0
Do:

1: set ε ′ =
‖Dt |v〉‖ε

2
and τ =

⌈√
2t ln 2

ε ′

⌉
2: initialize the registers R1R2R3 with the state |v, [[〉
3: apply the LCU operator Wτ as in (8.4) on R1R2R3
4: perform the measurement {Π[[, I −Π[[}

5: if outcome , “[[” then output “Fail” and stop
Output: registers R1R2R3

Complexity: τ QW steps Success probability: (1 − ε)‖Dt |v〉‖2

Theorem 5 (Quantum Fast-Forwarding). Algorithm QFF(|v〉, P, t, ε) outputs a
state ε-close to |Dtv, [[〉with success probability at least (1−ε)‖Dt |v〉‖2. Otherwise
it outputs “Fail”. The algorithm uses a number of QW steps

τ ∈ O

(√
t log

(
1

ε ‖Dt |v〉‖

))
.

Proof. Let {(cos θk, |vk〉), 1 ≤ k ≤ |V|} be a complete orthonormal set of eigen-
pairs of D. Then we can write |v〉 =

∑
k αk |vk〉 and the goal state |Dtv〉 =∑

k αk cos(θk)t |vk〉/‖Dt |v〉‖. From Lemma 9 we know that if we apply the op-
erator Wτ on |v, [[〉, and we perform a measurement {Π[, I −Π[}, then we retrieve
the state

1 1
1−p>τ

∑τ
l=0 qlTl(D)|v〉

 ( 1
1 − p>τ

τ∑
l=0

qlTl(D)|v〉
)
⊗ |[[〉

=
1∑τ

l=0 qlTl(D)|v〉
 ( τ∑

l=0
qlTl(D)|v〉

)
⊗ |[[〉

with success probability ‖ 1
1−p>τ

∑τ
l=0 plTl(D)|v〉‖2. We will denote the state |ψτ〉 =∑τ

l=0 qlTl(D)|v〉. By the approximation from Lemma 10 we know that if τ =⌈√
2t ln 2

ε ′

⌉
then |ψτ〉 will be ε ′-close to Dt |v〉:
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|ψτ〉 − Dt |v〉
 =√√√∑

k

����� τ∑
l=0

ql cos(lθ) − cost (θk)

�����2 · |αk |2
≤

√
ε ′2

∑
k

|αk |2 = ε
′.

From (7.6) in Example 12 we know that for any two nonzero vectors it holds that v
‖v ‖ −

w
‖w ‖

 ≤ 2‖v−w ‖
‖w ‖ , so we can bound |ψ〉‖ |ψ〉‖ − Dt |v〉

‖Dt |v〉‖

 ≤ 2ε ′

‖Dt |v〉‖
= ε,

using the fact that we chose ε ′ = ‖Dt |v〉‖ε/2. We can now also bound the success
probability using the reverse triangle inequality: 1

1 − p>τ

τ∑
l=0

plTl(D)|v〉
2
≥

 τ∑
l=0

plTl(D)|v〉
2

≥ (‖Dt |v〉‖ − ε ′)2 ≥ (1 − ε)‖Dt |v〉‖2.

By Lemma 9 we know that implementing the operator Wτ requires a number of
QW steps

τ =

⌈√
2t ln

(
4

ε ‖Dt |v〉‖

)⌉
∈ O

(√
t log

(
1

ε ‖Dt |v〉‖

))
. ut

This theorem establishes our algorithm for quantum fast-forwardingMarkov chains.
It winds back the quantum walk speedup of the Ambainis-Szegedy scheme to the
original problem of quantum simulation, showing that we can achieve the same
quadratic acceleration that is characteristic for this scheme. The success probability
is proportional to ‖Dt |v〉‖2, which will be small when the Markov chain spreads
out mass over a large set.

Notice that if we choose τ = t in the above algorithm, then the Chebyshev
expansion in (8.4) will not be truncated, and Π[Wτ |v, [[〉 = (Dt |v〉) ⊗ |[[〉. As
a consequence, there will be no error of approximation ε = 0 and the algorithm
will output the exact state |Dtv〉 with success probability ‖Dt |v〉‖2, requiring O(t)
QW steps. This retrieves the features of the original quantum simulation scheme
QS(|v〉, P, t). In the below example we illustrate the QFF scheme by showing how
we can create a superposition over the nodes of a graph faster than using quantum
simulation.

Example 13 (Creating Superpositions with QFF). In the previous chapter, Exam-
ple 12, we demonstrated how we can use the quantum simulation of a symmetric
Markov chain P = D to create a uniform superposition over the nodes of a graph.
For t ∈ Θ(τ log 1

ε |V | ), with τ the mixing time of P, the quantum simulation scheme
over t steps returns a state ε-close to a uniform superposition with a success prob-
ability Θ(1/|V|), where |V| is the total number of nodes. The expected runtime is
therefore Θ(τ |V| log |V |ε ).

Using QFF we can easily improve the expected runtime to
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Θ

(√
τ |V| log

|V|

ε

)
.

Indeed, starting from any node j ∈ V, we can run QFF(| j〉, P, t, ε ′) for t =
τ(‖π‖ε/8) and ε ′ = ε/2. This will generate an (ε/2)-approximation of the state
|Pt j〉, which will be (ε/2)-close to the uniform superposition |π〉. By the triangle
inequality, the generated state will be ε-close to |π〉. By a similar reasoning as in
Example 12 the success probability Θ(‖Pt | j〉‖2) ∈ Θ(1/|V|), and by Theorem 5
the scheme requires a number of QW steps in

O

(√
τ
(
‖π‖ε

8

)
log

2|V|
ε

)
∈ O

(
√
τ log

|V|

ε

)
.

The total expected runtime to generate an ε-approximation of |π〉 therefore becomes
O

(√
τ |V| log |V |ε

)
. On for instance the cycle ZN , having mixing time τ ∈ Θ(N2),

this comes down to O
(
N2 log N

ε

)
QW steps. 4

We conclude this section with some remarks on the algorithm:

• Most of the previous work using the Ambainis-Szegedy scheme builds on a
quadratic acceleration of the limit behavior of some Markov chain [3, 21, 22,
41, 42]. Our result complements this by showing that it is also possible to
capture the intermediate dynamics, without losing the quadratic speedup. In
Chapter 10 we will make explicit use of this for search algorithms and state
generation.

• We simulate the symmetric discriminant dynamics Dt |v〉 rather than the
Markov chain dynamics Pt |v〉. If P is symmetric, then D = P so that these
dynamics are equivalent. If P is reversible, which is commonly the case, then
these dynamics are also very closely related, as we already discussed in Chap-
ter 1. Indeed if π is the stationary distribution of a reversible Markov chain P,
then D = diag(

√
π)−1P diag(

√
π) and therefore

Dt = diag(
√
π)−1Pt diag(

√
π). (8.5)

As a consequence, the dynamics Dt |v〉 and Pt |v〉 are equivalent up to a rescal-
ing. This implies that in particular P and D have the same eigenvalues.

• In [117, 118] theAmbainis-Szegedy schemewas generalized from the symmet-
ric discriminant matrix of a Markov chain to more general Hermitian matrices
H, for which H = H†. In particular, this allows to quantize the Hamiltonian
that describes the dynamics of a continuous time quantum system, leading to
efficient discrete time schemes for the simulation of these continuous dynam-
ics [111, 113, 118]. Our results carry over, verbatim, to this setting as we will
discuss in Chapter 10.

• Childs, Kothari and Somma [119] recently used a similar truncation of the
Chebyshev expansion to implement the function D−1 in their quantum algo-
rithm for systems of linear equations. In their algorithm D represents a Her-
mitian linear system matrix, rather than the discriminant matrix of a Markov
chain.
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8.4 Grover Speedup

Both quantum simulationQS(|v〉, P, t) and quantum fast-forwardingQFF(|v〉, P, t, ε)
approximate the quantum state |Dtv〉 with probability (1 − O(ε))‖Dt |v〉‖2. As a
consequence, the expected number of runs needed to create the goal state will scale
as 1/‖Dt |v〉‖2. In this section we show that we can use the Grover quantum search
algorithm to quadratically improve this dependency to 1/‖Dt |v〉‖, provided that
we can reflect around the initial state |v〉, that is, implement the reflection operator

Rv = 2|v〉〈v | − I .

Such a reflection is generally considered feasible if |v〉 is some known basis state,
as is for instance the case if |v〉 = | j〉 for j a given initial node of a graph (see [46]
for details. Contrarily if |v〉 denotes a general superposition, such as the uniform
superposition |π〉 over the nodes of a graph, then it is not a priori clear whether we
can implement the reflection Rv .

Grover Search Algorithm

Grover’s quantum search algorithm, invented by Lov Grover in 1996 [100], is a
quantum algorithm for searching an unsorted list quadratically faster than a classical
computer. It is both one of the earliest and one of themostwidely used subroutines in
the field of quantumcomputing. Preceding and inspiring theWatrous andAmbainis-
Szegedy quantum walk schemes, it is similarly constructed by alternating two
reflections. The use of quantum walks for search problems [3, 14, 18, 22] is
therefore commonly seen as a generalization of Grover’s algorithm.

Whereas Grover considered the search of a single element in some space, wewill
describe and use a generalized formof his algorithmwherewe search for projections
in some subspace. This generalization is called amplitude amplification, invented
by Brassard and Høyer in 1997 [120], and independently by Grover in 1998 [121].
Consider a general quantum state |ψ〉 and a projector Π[ such that

|ψ〉 = Π[ |ψ〉 + (I −Π[)|ψ〉,

and assume that we wish to retrieve the component Π[ |ψ〉. It will prove useful to
think about the complex plane spanned by the initial state |ψ〉 and the goal state
Π[ |ψ〉, or equivalently by (I −Π[)|ψ〉 and Π[ |ψ〉, depicted in Figure 8.2.
Amplitude amplification builds on two reflection operators:

Rψ = 2|ψ〉〈ψ | − I,

reflecting around the initial state |ψ〉, and

R[ = 2Π[ − I,

reflecting around the flat subspace Im(Π[). As is discussed in [122], the dynamics
of |ψ〉 under these reflections are restricted to the plane spanned by (I − Π[)|ψ〉
and Π[ |ψ〉. We depict both reflections in Figure 8.2. The product −RψR[ applies a
rotation in that plane by an angle 2θ, where θ ∈ (0, π/2] is defined by
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Fig. 8.2 Illustration of the complex plane spanned by |ψ〉 and Π[ |ψ〉. The reflections R[ and Rψ
invoke a rotation in this plane. This rotation allows to turn the initial state |ψ〉 into the goal state
Π[ |ψ〉/‖Π[ |ψ〉 ‖.

sin θ = ‖Π[ |ψ〉‖.

Repeating this operation allows to rotate the initial state |ψ〉 close to the state
Π[ |ψ〉/‖Π[ |ψ〉‖. This is detailed in the following proposition. We include their
proof for completeness.

Proposition 16 (Amplitude amplification [122]). Let θ be defined as above, and
let m = bπ/(4θ)c. If we apply the operator (−RψR[)m times on the state |ψ〉, and we
perform a measurement {Π[, I −Π[}, then we find back the state Π[ |ψ〉/‖Π[ |ψ〉‖
with probability at least max{1 − sin2 θ, sin2 θ} ≥ 1/2.

Proof. We can write

|ψ〉 = sin θ
Π[ |ψ〉

‖Π[ |ψ〉‖
+ cos θ

(I −Π[)|ψ〉

‖(I −Π[)|ψ〉‖
.

By the above reasoning, the operator −RψR[ performs a rotation in the plane by
an angle 2θ. So if we apply the rotation operator −RψR[ m times, we find back the
state

(−RψR[)m |ψ〉 = sin((1 + 2m)θ)
Π[ |ψ〉

‖Π[ |ψ〉‖
+ cos((1 + 2m)θ)

(I −Π[)|ψ〉

‖(I −Π[)|ψ〉‖
.

If we perform a measurement {Π[, I − Π[} on this state, we retrieve the state
Π[ |ψ〉/‖Π[ |ψ〉‖ with probability sin2((1+ 2m)θ). Therefore we prove the theorem
by showing that sin2((1 + 2m)θ) ≥ max{1 − sin2 θ, sin2 θ}.

To do so, note that sin2((1 + 2m)θ) = 1 if m equals m̃ = π/(4θ) − 1/2. However
m has to be an integer, so we set m = bπ/(4θ)c, and therefore |m − m̃| ≤ 1/2. Now
if θ > π/4, then m = 0 and the success probability is sin2 θ > 1 − sin2 θ, which
proves the statement. If θ ≤ π/4, then sin2 θ ≤ 1 − sin2 θ, and so we must prove
that sin2((1 + 2m)θ) ≥ 1 − sin2 θ. Thereto we use that

|(1 + 2m)θ − (1 + 2m̃)θ | ≤ 2θ |m − m̃| ≤ θ,

which implies that (1 + 2m)θ = π
2 + x for some x with |x | ≤ θ. We can therefore

bound
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| cos((1 + 2m)θ)| = | cos(π/2 + x)| ≤ | sin x | ≤ | sin θ |.

As a consequence, sin2((1 + 2m)θ) ≥ 1 − sin2 θ. This finalizes the proof. ut

Since θ ≥ sin θ = ‖Π[ |ψ〉‖, this proposition allows to retrieve the good part
Π[ |ψ〉/‖Π[ |ψ〉‖ with high probability after ≤ π

4‖Π[ |ψ〉 ‖
applications of the reflec-

tions Rψ and R[. Contrarily, performing a measurement {Π[, I −Π[} on the initial
state would have returned the good part with probability ‖Π[ |ψ〉‖

2, thus requiring
1/‖Π[ |ψ〉‖

2 expected copies of the initial state to retrieve the good part. As we
will see later, it is often the case that the reflection Rψ requires the same amount of
resources or time as creating a new copy |ψ〉. The amplitude amplification scheme
therefore requires quadratically less resources or time to retrieve the good part, as
compared to simply measuring the state.

We note that implementation of amplitude amplification requires a good estimate
of the initial success probability ‖Π[ |ψ〉‖2 to determine m. If m is chosen either too
small or too large, then the guarantees on the success probability are lost, a problem
often referred to as the “soufflé problem”. A remedy is however proposed in [122],
in which iteratively different guesses for m are used. They show this approach also
yields a success probability ≥ 1/2, while still applying the operator (−RψR[) only
O(1/‖Π[ |ψ〉‖) times. For clarity we will implicitly rely on this fact, and throughout
assume that we can appropriately determine the parameter m.

The following is an elementary illustration of the search algorithm.

Example 14 (Boolean Formula). Consider some complicated boolean function f
on N-bit strings x ∈ {0, 1}N , so that f : {0, 1}N → {0, 1}. We wish to determine
whether this function can be satisfied, that is, whether there exists an x ∈ {0, 1}N
such that f (x) = 1. Classically we can always do a brute force search over the N-bit
strings. If the function is satisfiable then there exist M > 0 satisfying strings in
{0, 1}N . We can then randomly generate an N-bit string x and check it by evaluating
f (x). This strategy will return a satisfying string after Θ(2N/M) expected trials
and evaluations of f .

Using a quantum computer that is able to implement Grover search, we can
do this quadratically faster. Thereto we first construct the superposition over N-bit
strings

|ψ〉 =
1
√

2N

∑
x∈{0,1}N

|x〉.

If we can transform |ψ〉 into the state |ψM 〉 =
1√
M

∑
f (y)=1 |y〉, then a simple

measurement in the standard basis will return a satisfying string. By the above
proposition we can use amplitude amplification to do so, building on the reflections
Rψ = 2|ψ〉〈ψ | − I around the initial state and R[ = 2Π[ − I around the subspace of
satisfying strings, where the projector Π[ on this subspace is defined as

Π[ =
∑
f (y)=1

|y〉〈y |.

See for instance [100] and [46] for details on the implementation of these reflections,
showing most importantly that the rotation (−RψR[) can be implemented using a
single evaluation of the boolean function f . Since
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sin θ = ‖Π[ |ψ〉‖ =
 1
√

2N

∑
f (y)=1

|y〉
 =√

M
2N

,

we see from Proposition 16 that applying the operator (−RψRk) Θ(
√

2N/M) times,
and performing ameasurement {Π[, I−Π[}, returns the state |ψM 〉with probability
≥ 1/2. As a consequence, we can retrieve a satisfying string with Θ(

√
2N/M)

expected evaluations of f , which quadratically improves the number of evaluations
in the classical case. 4

Improved Algorithms

Wecan use amplitude amplification to quadratically improve the success probability
of our QFF algorithm. Similar to the above exposition, the QFF algorithm applies
the operator Wτ on some input state |v, [[〉 (≡ |v, [〉, we will use the shorthand [ to
denote [[)

|ψ〉 = Wτ |v, [〉 = Π[Wτ |v, [〉 + (I −Π[)Wτ |v, [〉,

and we wish to retrieve the part Π[Wτ |v, [〉. In the previous chapter we did so by
performing a measurement {Π[, I −Π[}, retrieving the good part with probability
‖Π[ |ψ〉‖

2 = ‖Π[Wτ |v, [〉‖
2.

Amplitude amplification shows that we can boost this success probability to a
constant by implementing the operator (−RψR[) for a number of times in

Θ(1/‖Π[ |ψ〉‖).

If on this state we perform a measurement {Π[, I − Π[} then we find back the
good part with probability ≥ max{1− ‖Π[ |ψ〉‖

2, ‖Π[ |ψ〉‖
2} ≥ 1/2. Implementing

the operator (−RψR[) however has a cost. Whereas the reflection R[ = 2Π[ − I is
considered an elementary operation on the basis states, with a negligible cost, the
cost of implementing the reflection Rψ = 2|ψ〉〈ψ | − I, with |ψ〉 some constructed
superposition over basis states, should be taken into account.

Lemma 11. The operator Rψ can be implemented using 2τ QW steps and a reflec-
tion Rv around the initial state |v, [〉.

Proof. We can rewrite the reflection Rψ = 2|ψ〉〈ψ | − I as follows:

2|ψ〉〈ψ | − I = 2Wτ |v, [〉〈v, [|W†τ − I

= Wτ(2|v, [〉〈v, [| − I)W†τ = WτRvW†τ .

Therefore we can implement the reflection by implementing the operators Wτ and
W†τ , and the reflection around the initial state Rv . To implement the operator W†τ ,
we recall that Wτ = V†q

[ ∑τ
l=0 |l〉〈l | ⊗ (R[U)

l
]
Vq and so

W†τ = V†q
[ τ∑
l=0
|l〉〈l | ⊗ (UR[)l

]
Vq .

Here we also used the fact that U = V†SV with S = S†, as in (7.3), so that U† = U.
We already discussed in Lemma 9 that the controlled operator

∑τ
l=0 |l〉〈l | ⊗ UR[
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can be implemented in τ QW steps. As a consequence, both Wτ and W†τ can be
implemented in τ QW steps. ut

It follows that the total operator (−RψR[) can be implemented using 2τR QW steps,
a reflection around the initial state |v, [〉, and a number of elementary operations. In
many cases the initial state will be an elementary basis state, so that the reflection
Rv will also be elementary, and the main cost boils down to 2Rτ QW steps. We
can now propose the improved QFF algorithm, QFFg, in Algorithm 3.

Algorithm 3 Quantum Fast-Forwarding with Reflections QFFg(|v〉, P, t, ε)
Input:
quantum state |v〉 ∈ HV , Markov chain P, t ∈ N, ε > 0
Do:

1: set ε ′ =
‖Dt |v〉‖ε

2
and τ =

⌈√
2t ln 2

ε ′

⌉
2: set m = bπ/(4θ)c, where 0 < θ ≤ π/2 s.t. sin θ = ‖Π[Wτ |v〉‖

3: initialize registers R1R2R3 with the state |v, [[〉
4: apply the LCU operator Wτ on R1R2R3
5: apply the operator (−RψR[)m = (−WτRvW†τR[)m . Amplitude Amplification
6: perform the measurement {Π[[, I −Π[[}

7: if outcome , “[[” then output “Fail” and stop
Output: registers R1R2R3

Complexity: (2m + 1)τ QW steps Success Probability: 1
2

Theorem 6. TheQFFg algorithmQFFg(|v〉, P, t, ε) outputs a state ε-close to |Dtv〉

with success probability at least 1/2. Otherwise, it outputs “Fail”. The algorithm
uses Θ(1/‖Dt |v〉‖) reflections around the initial state, and a number of QW steps

(2m + 1)τ ∈ O
( √

t
‖Dt |v〉‖

√
log

(
1

ε ‖Dt |v〉‖

))
.

Proof. The algorithm straightforwardly applies the amplitude amplification scheme
on the state Wτ |v, [〉. From Proposition 16 we know that the scheme has a suc-
cess probability ≥ max{1 − sin2 θ, sin2 θ} ≥ 1/2. The number of QW steps
for implementing Wτ and (−RψR[)m is τ respectively 2mτ. We know that
m ∈ O(1/‖Π[Wτ |v, [〉‖), and from the proof of Theorem 5 we can bound
‖Π[Wτ |v, [〉‖ ≥ ‖Dt |v〉‖−ε ′ = (1−ε/2)‖Dt |v〉‖ ∈ Θ(‖Dt |v〉‖) for all ε < 1/2. ut

We already mentioned below Theorem 5 that if we choose τ = t in the QFF
scheme, so that the Chebyshev expansion is not truncated, then the error term
vanishes: ε = 0. A similar reasoning shows that if we choose τ = t in the above
QFFg scheme, then the scheme exactly returns the state |Dtv〉 with a success
probability ≥ 1/2 in (2m + 1)t ∈ O(t/‖Dt |v〉‖) QW steps. Hence we also find
the following result, which improves on the quantum simulation scheme from
Chapter 4.



8.4 Grover Speedup 97

Proposition 17 (Quantum Simulation with Reflections). Algorithm 3 for τ = t
outputs the state |Dtv〉 with success probability at least 1/2. Otherwise it outputs
“Fail”. The algorithm uses Θ(1/‖Dt |v〉‖) reflections around the initial state, and
a number of QW steps

(2m + 1)τ ∈ O
(

t
‖Dt |v〉‖

)
.

For comparison, the original scheme requiredΘ(‖Dt |v〉‖−2) expected copies of the
initial state and Θ(t‖Dt |v〉‖−2) expected QW steps to succeed.

Example 15 (Creating Superpositions with QFFg). Again consider a symmetric
Markov chain P = D with mixing time and (uniform) stationary distribution π.
In the previous section we demonstrated how we can apply QFF(| j〉, P, τ, ε), for
some initial node j, to create an ε-approximation of the uniform superposition
|π〉 in O

(√
τ |V| log |V |ε

)
QW steps. Using the above scheme, assuming that we

can reflect around the initial state | j〉, we can improve this to O
(√
τ |V| log |V |ε

)
QW steps. Indeed, using an analogous reasoning as in Example 13, we can im-
plement QFFg(| j〉, P, t, ε ′), for ε ′ = ε/2 and t = τ(‖π‖ε/8), which returns an
ε-approximation of |π〉. Since ‖Dt | j〉‖ ∈ Θ(1/

√
|V|), the number of QWs required

isO
(√
τ |V| log |V |ε

)
. On for instance the cycle ZN , having τ ∈ Θ(N2), this requires

O
(
N3/2 log N

ε

)
QW steps.

We show in Appendix A that this scheme can be generalized to a reversible non-
symmetric Markov chain P with a non-uniform stationary distribution π. Starting
from a node j, the generalized scheme returns an ε-approximation of the quantum
state |

√
π〉 =

∑√
π(i)|i〉 in an expected number of QW steps in

O
(√

τ

π( j)
log

ε

‖π( j)‖

)
.

For π the uniform distribution this reduces to the above scheme. Building on
work by Krovi et al [22] we also give an improved algorithm which returns an
ε-approximation of |

√
π〉, starting from a node j, in an expected number of QW

steps in

O

(√
HT( j)
ε

log
1
ε

)
.

Here HT( j) is the hitting time of node j, defined as the expected number of steps
of P before element j is hit, starting from the stationary distribution over the
complement of j. It is known that HT( j) ∈ O

(
τ
π(j)

)
[63], and in some cases HT( j)

is much smaller. As a consequence, if we neglect the error term, this improves over
the former scheme. On for example the cycle ZN , HT( j) ∈ Θ(N2), and hence this
improved scheme requires O

(
N√
ε

log 1
ε

)
. Since the diameter of ZN is Θ(N), the

dependence on N is optimal. 4



Chapter 9
Quantum Property Testing

In this chapter we discuss the use of QFF for property testing on graphs: given
query access to a graph, property testing aims to determine whether it has a certain
property, or whether it is far from having this property. For example, is a given
graph bipartite, or is it far from any bipartite graph? This is a relaxation as compared
to effectively deciding whether a graph is bipartite or not (but possibly very close
to bipartite). The property testing relaxation typically allows for algorithms that
work in sublinear time, i.e., scale as o(N)with N the number of nodes in the graph.
This in contrast to the complexity of deciding properties, which typically requires a
number of queries at least linear in the graph size. The field of property testing was
largely initiated by the work of Goldreich, Goldwasser and Ron [102], in which
they showed how graph properties such as bipartiteness and k-colorability could
be tested with a number of queries independent of the graph size.

We will consider property testers for the expansion and the clusterability of
graphs. We start by discussing the expansion tester of Goldreich and Ron (GR),
which they presented in later work [103], and we prove how QFF allows to accel-
erate this tester very naturally. The expansion of a graph closely ties to the graph
conductance, and hence forms a measure for the random walk mixing time over
the graph. The idea behind the GR tester is to run a number of random walks and
count the number of pairwise collisions between the end points. If a random walk
is congested in some low expansion set, than this number will be greater than when
the random walk spreads out efficiently, thus forming a measure for the spreading
behavior and expansion of the random walk. To speed up this task, we propose the
use of QFF to quantum simulate a randomwalk, and then use a tool called quantum
amplitude estimation to estimate the 2-norm of the random walk probability distri-
bution. This 2-norm will similarly be large if the random walk congests and small
otherwise, thus allowing to detect whether the random walk is able to efficiently
spread out or not. In preceding work, Ambainis, Childs and Liu [123] have also
used quantum walks to speed up the GR tester, be it in an indirect way, using a very
different approach. Interestingly this leads to a complementary speedup to ours. In
the final section we discuss the more recent line of algorithms for testing graph
clusterability, forming a natural generalization of the work of Goldreich and Ron.
We discuss how these techniques make use of algorithms for classifying nodes
in clusters, and show how QFF allows to accelerate these algorithms. Such node

98
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classification is of relevance beyond the setting of property testing, allowing for
instance nearest-neighbor classification of nodes in a learning problem.

We remark that work by Valiant and Valiant [124] shows that estimating the
distance in 2-norm between given probability distributions is much easier and
more stable than estimating the distance in 1-norm, which would otherwise be the
natural choice. This underlies the fact that many graph property testing algorithms
estimate the 2-distance between random walk distributions. QFF, and quantum
simulation more generally, allows to cast a probability distribution p as a quantum
state |p〉 = p/‖p‖, which is naturally associated to the 2-norm. As a consequence,
QFF very naturally leads to quantum algorithms for estimating the 2-norm distance
between randomwalk distributions, directly leading to the quantization and speedup
of many existing graph property testers that we discuss in this chapter.

9.1 Classical Expansion Tester

To formalize the concept of a graph property tester, we must introduce the notion
of oracle or query access to a graph as used throughout the literature on property
testing. Query access to an N-node undirected graph with degree bound d means
that we can query the graph with a string (v, i) ∈ [N] × [d], upon which we receive
either the i-th neighbor w ∈ [N] of v, or a special symbol in case v has less than
i neighbors. Clearly this model allows to perform a random walk over the graph.
In addition, and in contrast to our former work in the first part of this thesis, this
also allows to generate a uniformly random node by simply generating a random
number in [N], identifying one of the nodes.

Given such query access to a graph, the task of a property tester is to determine
whether the graph has a certain property or is far from any graph having that
property. To formalize what this means, we introduce a distance measure between
graphs. We define the distance between two graphs G and G′ as the number of
edges that have to be added or removed from G to transform it into G′. With E
and E ′ the edge sets of G resp. G′, this equals the size of the symmetric difference
|E4E ′ |. We say that two N-node graphs G and G′ with degree bound d are ε-far
from each other if |E4E ′ | ≥ εNd. Given a graph and a parameter ε , a property
tester should distinguish between the graph having a certain property, and the graph
being at least ε-far from any graph with that property (i.e., the distance between
the graph and any graph with that property is ≥ εNd). When given a graph that is
neither, the algorithm can output whatever. The efficiency of a tester is measured
by the number of queries it makes to the graph: a good tester should make as few
queries to the graph as possible. For the bounded degree graphs and algorithms
that we consider, this will be equivalent to minimizing the number of random walk
steps performed on the graph.

Goldreich and Ron [103] studied a property tester for the expansion of a graph1.
The expansion or vertex expansion of a graph G = (V, E) is defined by

1 They actually studied a property tester for the spectral gap of a graph, for which currently there is no known sublinear
algorithm. All follow-up work however, as well as our work, considers the closely-related graph expansion.
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min
|S |≤ |V |/2

|∂Sc |/|S|,

where ∂Sc denotes the outer boundary ofS, i.e., the set of nodes inSc that have an
edge going to S. This quantity is closely related to the random walk conductance
that we have introduced in Chapter 3 – for bounded degree graphs it even holds
that the vertex expansion is of the same order as the conductance. For some given
parameter Υ, an expansion tester should determine whether a given graph has
expansion ≥ Υ, or whether it is at least ε-far from any such graph. GR, and the
subsequent literature [123, 125–127], have relaxed this setting somewhat. They
propose the following definition:

Definition. An algorithm is a (Υ, ε, µ) expansion tester if there exists a constant
c > 0, possibly dependent on d, such that given parameters N , d, and query access
to an N-node graph with degree bound d it holds that

• if the graph has expansion ≥ Υ, then the algorithm outputs “accept” with
probability at least 2/3,

• if the graph is ε-far from any graph having expansion ≥ cµΥ2, then the
algorithm outputs “reject” with probability at least 2/3.

In the strict setting of property testing, the expression “≥ cΥ2” in the second bullet
should be replaced by “≥ Υ”. Although unproven, the relaxation in this definition
seems necessary to allow for efficient (sublinear) testing. GR [128] conjectured
that the below Algorithm 4 is a (Υ, ε, µ) expansion tester. They also proved that any
classical expansion tester must make at least Ω(

√
N) queries to the graph.

Algorithm 4 Graph Expansion Tester
Input: parameters N and d; query access to N-node graphG with degree bound d; expansion
parameter Υ; accuracy parameter ε ; running time parameter µ < 1/4
Do: do the following T ∈ Θ(ε−1) times
1: select a uniformly random starting vertex s
2: perform m ∈ Θ(N1/2+µ) independent random walks of length t ∈ Θ(d2Υ−2 log N),

starting in s
3: count number of pairwise collisions between the endpoints of the m random walks
4: if the count is greater than M ∈ Θ(N2µ), abort and output “reject”

Output: if no “reject”, output “accept”

Complexity: Θ(N1/2+µΥ−2ε−1 log N) QW steps

The intuition behind the algorithm is very clear. It builds on the use of a random
walk P on the given graph, which starting from a node v jumps to any of its d(v)
neighbors with a probability 1/(2d), and stays put otherwise:

P(u, v) =


1/(2d) (v, u) ∈ E
1 − d(v)/(2d) u = v

0 elsewhere.
(9.1)

This walk is lazy and symmetric, and hence converges to the uniform distribution.
We can easily implement it in the oracle model: at some node v, with probability
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1/2 we pick a random integer i ∈ [d], we then query the graph with the string (v, i).
If we receive a neighbor of v then we move to this neighbor, in any other case we
stay on node v. If the graph has a vertex expansion Υ, then the conductance of
this random walk, as defined in Chapter 3, is Υ/d. By Proposition 4 this implies
that the mixing time of this random walk is O(d2Υ−2 log N). As a consequence,
the probability distribution of the random walks in step 2 of the algorithm must
be close to uniform. If p describes the probability distribution of the endpoint of
a random walk starting from some fixed node, then the probability of a pairwise
collision between two independent endpoints, i.e., the probability that the random
walks end in the same node, is given by∑

p( j)2 = ‖p‖2.

This will be close to 1/N if p is close to uniform. If on the other hand the expansion
of the graph is � Υ, then random walks can get stuck in a small region, leading
to an increase in the 2-norm or collision probability. It follows that the collision
probability of a random walk forms a measure for the expansion of the graph.
The key insight is then that, by a refinement of the birthday paradox, Θ(N1/2+µ)
independent samples of the same random walk suffice to estimate the collision
probability to within a multiplicative factor 1 + O(N−2µ). As a consequence, it is
possible to estimate the 2-norm of a t-step random walk on an N-node graph using
Θ(N1/2+µtε−1) random walk steps.

The conjecture that Algorithm 4 is an expansion tester was later resolved as the
conclusion of a series of papers by Czumaj and Sohler [125], Kale and Seshadhri
[126] and Nachmias and Shapira [127], leading to the following theorem.

Theorem 7 ([127]). If d ≥ 3, then Algorithm 4 is a (Υ, ε, µ) expansion tester with
runtime

O(N1/2+µ
Υ
−2d2ε−1 log N).

In the following section we show that we can use QFF to accelerate this tester very
naturally by quantum simulating the random walks, and using quantum techniques
to estimate the 2-norm.

9.2 Quantum Expansion Tester

It is possible to extend the classical query model to the quantum setting, a proper
definition of which can be found in [123, 129]. For this work it suffices to know
that (i) we can generate a uniformly random node as in the classical case, and (ii)
we can implement a single step of the quantum walk operator as defined in 7 using
O(1) queries to the graph.

To accelerate the classical testerwewill quantum simulate the randomwalks, and
then perform a standard routine called quantum amplitude estimation to estimate
the 2-norm of the simulated random walks. This routine is very similar to the
aforementioned algorithm for quantum amplitude amplification, and is described
in the same work by Brassard et al [122]. It is captured by the following lemma. We
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note that in the original statement in [122] the number of reflections scales as 1/δ
for a success probability 1 − δ. We use standard tricks to improve this to log(1/δ).

Lemma 12 (Quantum Amplitude Estimation). Consider a quantum state |ψ〉
and a general projector Π[. Give some δ > 0, there exists a quantum algorithm
that outputs an estimate a such that��‖Π[ |ψ〉‖ − a

�� ≤ ε
with probability at least 1 − δ, using O(log(1/δ)ε−1) reflections around |ψ〉 and
around the image of Π[.

Proof. We can use the quantum amplitude estimation algorithm from [122, The-
orem 12] to output an ε ′ = ε/3-close estimate with success probability at least
5/6. This algorithm requires O(1/ε) reflections around |ψ〉 and around the image
of Π[. We can boost the success probability to 1 − δ by running their algorithm
T = d18 ln δ−1e times, which by Hoeffding’s inequality implies that, with a prob-
ability at least 1 − δ, at least 2T/3 iterations have been successful. Therefore,
with probability 1 − δ, it holds that (i) at least 2T/3 estimates lie in the interval
[‖Π[ |ψ〉‖ − ε

′, ‖Π[ |ψ〉‖+ ε
′], and therefore (ii) we can find a subsetS of estimates,

|S| ≥ 2T/3, all of which lie in a 2ε ′-interval. This subset must overlap with the
interval [‖Π[ |ψ〉‖ − ε

′, ‖Π[ |ψ〉‖ + ε
′].

If nowwe output any element of this subsetS, we know that it lies in the interval
[‖Π[ |ψ〉‖ − 3ε ′, ‖Π[ |ψ〉‖ + 3ε ′]. This proves that with probability 1 − δ we can
output an estimate of ‖Π[ |ψ〉‖ with precision 3ε ′ = ε , using T runs of the quantum
amplitude estimation algorithm in [122], each of which requires O(1/ε) reflections
around |ψ〉 and around the image of Π[. This proves the claimed statement. ut

We will use this amplitude estimation algorithm to estimate the 2-norm of a
random walk. Thereto we recall the QFF scheme as discussed in Section 8.3. Note
that the random walk (9.1) proposed in the GR tester is symmetric, so that we can
simply replace the discriminant matrix D in the QFF algorithm by the randomwalk
matrix P. Given a quantum state |s, [[〉, QFF applies an operator Wτ so that

Π[Wτ |s, [[〉 =
(

1
1 − p>τ

τ∑
l=0

plTl(P)|s〉
)
⊗ |[[〉 ≈ (Pt |s〉) ⊗ |[[〉,

as in (8.4), where the summation corresponds to the truncated Chebyshev ex-
pansion of Pt . This requires O(τ) QW steps. If we set τ ∈ Θ

(√
t log(Nε−1)

)
(replacing ‖Pt |s〉‖ by its lower bound N−1/2 in Algorithm 3) then the 2-norm of

1
1−p>τ

∑τ
l=0 plTl(P)|v〉 approximates the 2-norm of Pt |v〉 to precision O(ε). Ap-

plying quantum amplitude estimation on the state Wτ |v, [[〉 and projector Π[ will
therefore allow to estimate the 2-norm of Pt |v〉, as was our initial goal. This scheme
is easily formalized in the below algorithm and theorem.
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Algorithm 5 Quantum 2-norm Estimator
Input: parameters N and d; query access to N-node graph G with degree bound d; starting
vertex s; running time t; accuracy parameter ε ; confidence parameter δ
Do:
1: set τ ∈ O(

√
t log(N/ε))

2: apply the QFF operator Wτ on the quantum state |s, [[〉
3: use quantum amplitude estimation to output estimate of ‖Π[Wτ |s, [[〉‖

to error ε/2 with probability 1 − δ

Theorem 8 (Quantum 2-norm Estimator).With probability at least 1 − δ, Algo-
rithm 5 outputs an estimate a such that��‖Pt |s〉‖ − a

�� ≤ ε .
The algorithm requires a number of QW steps bounded by

O
(√

t
ε

log
1
δ

log1/2 N
ε

)
.

Proof. We will prove the theorem for

τ =
⌈√

2t ln
(
8
√

N/ε
)⌉
.

By this choice, and the fact that ‖Pt |s〉‖ ≥ N−1/2 on any N-node graph, we can
deduce from the proof of Theorem 5 that��‖Π[Wτ |s〉‖ − ‖Pt |s〉‖

�� ≤ ε/2.
Applying quantum amplitude estimation onΠ[Wτ |s〉 with a precision ε/2 therefore
leads to an estimate of ‖Pt |s〉‖ up to error ε . By Lemma 12 we can do so with
a probability 1 − δ using O(ε−1 log δ−1) reflections around Wτ |s〉. By Lemma 11
in Section 8.4, we can implement a single such reflection using 2τ QW steps,
and a reflection around the initial state (which is a basis state and can hence be
neglected). ut

We can compare this with the classical 2-norm tester proposed by Czumaj, Peng
and Sohler [104, Lemma 3.2], building on the GR tester. For δ = 1/3 their tester
requires O(t/ε) queries to the graph, whereas our algorithm only requires Õ(

√
t/ε)

queries. We can now use our quantum 2-norm tester to create a quantum tester for
the graph expansion. The proof makes use of some details from the classical proof
of Nachmias and Shapira [127].
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Algorithm 6 Quantum Graph Expansion Tester
Input: parameters N and d; query access to N-node graphG with degree bound d; expansion
parameter Υ; accuracy parameter ε ; running time parameter µ < 1/4
Do:
1: set t ∈ O(d2Υ−2 log N), M ∈ O(N−1/2), ε ′ ∈ O(N−1/2+µ), δ ∈ O(ε)
2: for T ∈ O(ε−1) times do
3: select a uniformly random starting node s
4: use Algorithm 5 to create estimate a of ‖Pt |s〉‖ to precision ε ′,

with probability 1 − δ
5: if a > M + ε ′, abort and output “reject”

Output: if no “reject”, output “accept”

Theorem 9 (Quantum Graph Expansion Tester). If d ≥ 3 then Algorithm 6 is a
(Υ, ε, µ) expansion tester. The algorithm has a runtime

O(N1/2+µdΥ−1ε−1 log(ε−1) log N).

Proof. We will prove the theorem for t = 16d2Υ−2 log N , M =
√

N−1(1 + N−1),
ε ′ = N−1/2+µ/(16

√
2), δ = ε/300 and T = 90/ε .

In each iteration the estimate a will be such that
��a − ‖Pt |s〉‖

�� ≤ ε ′ with
probability 1 − δ, and hence��a2 − ‖Pt |s〉‖2

�� = ��(a − ‖Pt |s〉‖)(a + ‖Pt |s〉‖)
�� ≤ 2ε ′.

Nachmias and Shapira [127] showed that if G has a conductance ≥ Υ, then for all
nodes s it holds that

‖Pt |s〉‖ ≤ M =
√

N−1(1 + N−1).

Given such a graph, in each iteration the estimate a ≤ M + ε ′ with probability
1− δ, so that the probability of a faulty rejection is at most δ per iteration. The total
probability of a faulty rejection can then be bounded by Tδ < 1/3.

In the negative case, [127] showed that there exists a constant c > 0 such that if
G is ε-far from any graph with max degree d and conductance ≥ cµΥ2, then there
exist at least εN/128 vertices s for which it holds that

‖Pt |s〉‖ ≥
√

N−1(1 + 32−1N−2µ).

Given such a graph, in each iteration the estimate a will now be such that a ≥
‖Pt |s〉‖ − ε ′ ≥

√
N−1(1 + 32−1N−2µ) − ε ′ with probability 1 − δ. To show that

this quantity > M + ε ′, we bound M =
√

N−1(1 + N−1) ≤ N−1/2(1 + N−1/2) and√
N−1(1 + 32−1N−2µ) ≥ N−1/2(1 − N−µ/(4

√
2)), which shows that√

N−1(1 + 32−1N−2µ) − M ≥ N−1/2−µ/(4
√

2).

This proves that indeed√
N−1(1 + 32−1N−2µ) − ε ′ > M + ε ′

for ε ′ = N−1/2−µ/(16
√

2). As a consequence, a single iteration will correctly output
a rejection with probability (1 − δ)εN/128. The total probability of correctly
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rejecting at least once is therefore lower bounded by T(1 − δ)ε/128 ≥ 2/3. This
concludes the proof thatAlgorithm6 is a (Υ, ε, µ) graph expansion tester. Its runtime
is given by T times the runtime of the 2-norm tester, which by Theorem 8 is

O
(√

t
ε ′

log
1
δ

log1/2 N
ε ′

)
∈ O

( (
dΥ−1 log1/2 N

)
N1/2+µ log

1
ε

log1/2 N1+µ
)
.

ut

We recall that the classical GR tester has a runtime

O(N1/2+µd2
Υ
−2ε−1 log N).

Up to the log(ε−1)-factor we improve this runtime with a factor dΥ−1, which
basically follows from the fact that we quadratically accelerate the random walk
runtime to t ∈ Θ̃(dΥ−1). There exist graphs for which

Υ ∈ Ω(1/N),

so that in some cases we improve the runtime by a factor dΥ−1 ∈ Θ(dN).
In summary, we have shown that QFF allows to speed up the GR expansion tester

in a very natural way. We use it to quantum simulate and estimate the 2-norm of a
t-step random walk in Õ(N1/2+µ√t) queries to the graph, rather than Õ(N1/2+µt) as
is the runtime of the original tester.We can now compare this result to the preceding
work by Ambainis, Childs and Liu [123]. They used a very different approach to
speed up the GR expansion tester, using quantum walks only indirectly, which
results in a runtime improvement of a different nature. In rough strokes they speed
up the classical 2-norm tester by making use of Ambainis’ quantumwalk algorithm
for element distinctness [4] to count collisions between pairs of classical random
walks more efficiently. This allows them to improve the runtime of the 2-norm
tester to Õ(N1/3+µt), which provides a speedup complementary to the speedup of
our 2-norm tester which in this context has a runtime Õ(N1/2+µ√t). Using this
2-norm tester in the above Algorithm 6 leads to a runtime

Õ(N1/3+µd2
Υ
−2ε−1).

Combined with our approach, this shows that there exists a quantum expansion
tester with runtime Õ(min(N1/3+µd2Υ−2, N1/2+µdΥ−1)ε−1), simply by running ei-
ther algorithm dependent on the relative size of N , Υ and d. We currently see no
viable approach for simultaneously achieving the Θ̃(dΥ−1) gain in random walk
runtime of our algorithm, and the Θ̃(N1/6) gain in collision counting of the algo-
rithm in [123].

We note that a property tester in the same spirit as the GR expansion tester was
proposed byBatu et al [130] for testing themixing time of generalMarkov chains on
a graph. For the special case of reversible Markov chains we can straightforwardly
apply the above ideas to their algorithm, yielding a similar speedup.
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9.3 Clusterability and Robust s-t Connectivity

The GR technique of using collision counting to estimate the 2-norm of a distribu-
tion can also be used to estimate the inner product of any two given distributions p
and q, defined by

〈p, q〉 =
∑
j

p( j)q( j).

Indeed, this quantity is equal to the collision probability between the two distribu-
tions. This observation underlies the subsequent work by Batu et al [130], Valiant
[124] and Chan et al [131] for estimating the 1-norm and 2-norm distance between
a given pair of distributions. Below we will present a quantum algorithm based on
QFF to estimate the 2-norm between random walk distributions, accelerating these
existing classical algorithms. The latter formed the inspiration for the more recent
line of graph clusterability testers by Czumaj et al [104] and Chiplunkar et al [105].
Here the goal is to test whether a graph can be appropriately clustered into k parts
for some given k. The GR expansion tester can be seen as a graph clusterability
tester for k = 2. As a subroutine they use an algorithm to distinguish whether a pair
of nodes lie in the same cluster or not, leading to a robust notion of s-t connectivity.
We will show that our quantum algorithm for estimating the 2-distance leads to a
speedup on this subroutine, which is of independent interest outside of the setting
of property testing, and in extent leads to a speedup on their clusterability tester.

2-distance Estimator

To estimate the 2-distance of a pair of random walks, we will combine QFF with
the SWAP test, which is a standard tool in quantum algorithms. The test assumes
that we are given two quantum states |ψ〉 and |φ〉 and an ancillary qubit in the state
|0〉, yielding the state |0〉|ψ〉|φ〉. On this state we apply the following operations:

|0〉|ψ〉|φ〉 H⊗I⊗I
→

|0〉+ |1〉
√

2
|ψ〉|φ〉

cS
→ 1√

2
|0〉|ψ〉|φ〉 + 1√

2
|1〉|φ〉|ψ〉

H⊗I⊗I
→ 1

2 |0〉(|ψ〉|φ〉 + |φ〉|ψ〉) +
1
2 |1〉(|ψ〉|φ〉 − |φ〉|ψ〉),

where we used the Hadamard gate

H =
1
√

2

[
1 1
1 −1

]
,

and the conditional swap operation cS swapping the second and third registers
conditional on the first register being in the state |1〉. We will call the combined
unitary operation USWAP = (H ⊗ I ⊗ I)cS(H ⊗ I ⊗ I). We can now either measure
the first register, or apply quantum amplitude estimation to the projector Π1 =
|1〉〈1| ⊗ I ⊗ I, to estimate the quantity

‖|ψ〉|φ〉 − |φ〉|ψ〉‖2 = 2(1 − |〈ψ |φ〉|2).

This quantity will be small if |ψ〉 and |φ〉 are close and large otherwise, allowing
to estimate the distance between the input states |ψ〉 and |φ′〉. We can combine
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this test with our QFF algorithm, and the 2-norm estimator in previous section, to
obtain a tester for the 2-distance, the description of which we postpone to Section
9.4.

Theorem 10 (Quantum 2-distance Estimator). With probability at least 1 − δ,
Algorithm 7 outputs an estimate a such that��‖Pt |u〉 − Pt |v〉‖2 − a

�� ≤ ε .
For a = max{‖Pt |u〉‖, ‖Pt |v〉‖} and a = min{‖Pt |u〉‖, ‖Pt |v〉‖}, the algorithm
requires an expected number of QW steps bounded by

O

(
√

t
(

a
ε
+

a4

aε2

)
log

log N
δ

log3/2 N
ε

)
.

For comparison, the classical estimator presented in Czumaj et al [104, Theorem
3.1] requires a number of graph queries or random walk steps O

(
t aε log 1

δ

)
. Chan

et al [131] give an information theoretical proof that classically Ω(a/ε) samples
are needed to estimate the 2-distance between a pair of distributions.

Classifying Nodes

Czumaj et al [104] use their classical 2-distance estimator to propose a property
tester for the clusterability of a graph. While ambiguous in nature, the notion
of clusterability used in that and other lines of work follows the intuitive ideas
presented for instance by Oveis Gharan and Trevisan [132]. A partition V =
S1 ∪ · · · ∪Sh of the nodes into disjoint clusters is quantified as a good clustering if
the clusters arewell-connected internally aswell as poorly connected externally. For
a single cluster Sj the internal connectivity is quantified by the inner conductance
of the induced subgraph G[Sj], where G[Sj] is defined as the graph consisting of
the nodes inSj and the edges between these nodes. Following our former definition
(3.3) in Chapter 3, we define the inner conductance Φ(G[Sj]) of a subset Sj as the
conductance of the induced subgraph G[Sj] with respect to the symmetric random
walk defined in (9.1). For a graph with degree bound d this becomes

Φ(G[Sj]) = min
T⊂Sj, |T |≤ |Sj |/2

|E(T ,Sj\T )|

d |T |
.

Again in accordance with Chapter 3, we define the outer conductance of a single
cluster Sj as

Φ(Sj) =
|E(Sj,S

c
j )|

d |Sj |
,

Given these definitions, a graph is called (k,Φin,Φout)-clusterable if there exists a
partition V = S1 ∪ · · · ∪ Sh , h ≤ k, such that the clusters are well-connected
internally, φ(G[Sj]) ≥ Φin, and the clusters are poorly-connected externally,
φ(Sj) ≤ Φout. It turns out that graph clusterability can be detected when the
gap between Φin and Φout is sufficiently large - typically quadratic, Φout ∈ Õ(Φ2

in).
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To test the graph clusterability, Czumaj et al [104] propose a subroutine for
classifying nodes, i.e., determining whether two nodes lie in the same cluster or
not. This routine is of independent interest, outside of setting of graph property
testing. Indeed, when given for instance a similarity graph of a set of objects, it
can serve as a way to classify an object between a number of exemplary objects. It
turns out that it is possible to classify nodes quite intuitively by comparing random
walks starting from the nodes: the 2-distance between random walks starting from
nodes of the same cluster will typically be smaller than the 2-distance between
nodes from different clusters. This is formalized in the following lemma, which
we extract from Czumaj et al [104, Lemma 4.1 and 4.3]. Given an appriopriately
clusterable graph, having a gap Φout ∈ Õ(Φ2

in), it gives bounds on the 2-distance
between pairs of nodes coming from the same or different clusters. Following the
work of Spielman and Teng [133] on local graph clustering, the lemma is confined
to the internal nodes S̃ ⊆ S of a cluster S. These nodes are characterized by the
fact that a t-step random walk, starting from an internal node of a cluster S, will
have a probability bounded by tΦ(S) to exit S. One can show that |S̃ | ≥ |S|/2, so
that at least half of the nodes inside a cluster are internal nodes.

Lemma 13 ([104]). Consider a (k,Φin,Φout)-clusterable graph with degree bound
d, and let S and S′ be clusters of such a partition. Assume that

Φout ≤ cΦ2
in/log N,

with c some constant dependent on d, k, |S|/N and |S′ |/N . Then there exist subsets
S̃ ⊆ S, |S̃ | ≥ |S|/2, and S̃′ ⊆ S′, |S̃′ | ≥ |S′ |/2, and a universal constant c′, such
that for t = dc′k4Φ−2

in log Ne it holds that

• if two nodes u, v ∈ S̃ or u, v ∈ S̃′, then ‖Pt |u〉 − Pt |v〉‖2 ≤ 1/(4N).
• if two nodes u ∈ S̃ and v ∈ S̃′, then ‖Pt |u〉 − Pt |v〉‖2 ≥ 1/N .

Under the additional assumption that the size of each of the clusters is of the same
order, |Sj | ∈ Θ(N/k), we can show that the lower bound in the second bullet can
be improved to Ω(1/|S|) ∈ Ω(k/N), thus scaling with the size of the local cluster.
This is relevant when working with massive graphs, as considered for instance by
Spielman and Teng [134], where the scaling with the total graph size should be at
most logarithmic.

The lemma shows that under appropriate conditions we can distinguish whether
two nodes u and v are internal nodes of the same cluster or not, simply by estimating
the 2-distance between random walks from u and v. This leads to the below
proposition. It can be seen as a robust version of s-t connectivity, more relevant
to e.g. social networks, where mere connectivity between two nodes is no longer
deemed an interesting quantity. Alternatively, in a learning context, it allows to
perform nearest-neighbor classification of nodes on a graph. The idea of the proof
is again quite clear. Under the conditions of the above lemma, we can distinguish
both cases by estimating ‖Pt |u〉 − Pt |v〉‖2 to error ε = 1/N . Following Theorem
10, we can efficiently do so provided that a = max{‖Pt |u〉‖, ‖Pt |v〉‖} is not too
large. Czumaj et al [104, Lemma 4.2] prove that, under the conditions of the above
lemma, for at least 9/10-th of the nodes u it holds that ‖Pt |u〉‖ ∈ O(k/N). This
allows us to prove the following proposition, showing that a large fraction of the
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nodes of an appropriately clustered graph can be efficiently classified: given two
such nodes, we can determine whether they lie in the same cluster or not.

Proposition 18 (Classifying Nodes).

• Under the conditions of Lemma 13, we can use the quantum 2-distance esti-
mator to determine with probability at least 2/3 whether two internal nodes
lie in the same cluster or not.

• There exists a subset Ṽ ⊆ V, |Ṽ | ≥ 9|V|/10, such that if in addition both
nodes lie in Ṽ, then the algorithm requires O(N1/2k4Φ−1

in log3/2 N) expected
QW steps.

Proof. To prove the first bullet, it suffices to use Lemma 13 which states that if
both lie in the same cluster, then ‖Pt |u〉 − Pt |v〉‖2 ≤ 1/(4N), whereas if both lie in
different clusters, then ‖Pt |u〉 − Pt |v〉‖2 ≥ 1/N . By Theorem 10 we can estimate
‖Pt |u〉 − Pt |v〉‖2 to error ε = 1/N , which allows to distinguish both cases.

To prove the second bullet, let Ṽ denote a set of nodes u for which ‖Pt |u〉‖ ∈
O(k/N), which by [104, Lemma 4.2] we know we can choose of size at least
9|V|/10. If both nodes lie in Ṽ, then in Theorem 10 we can set a ∈ O(k/N), and
a ∈ O(1/N) since necessarily ‖Pt |u〉‖ ≥ 1/N for any node u. In this case, the
expected number of QW steps becomes O(

√
tN log3/2 N). For t as in Lemma 13,

this proves the second bullet. ut

We can compare the runtime in the second bullet by the runtime when using
classical collision counting, which requires a number of RW steps Õ(N1/2k4Φ−2

in ).
Applying the element distinctness technique by Ambainis et al [123] requires a
number of QW steps Õ(N1/3k4Φ−2

in ).
Lemma 13, and a classifier as in Proposition 18, underlies the graph clusterability

tester proposed by [104]. Since the tester is in the same vein as the GR expansion
tester, we will not state it explicitly but merely summarize the idea. The algorithm
selects a uniformly random set of Θ(k log k) nodes over which it constructs a
similarity graph by adding an edge between any pair of nodes if their random
walk probabilities are closer than some threshold. This similarity graph serves as
a graph sketch, reminiscent of the recent surge of results on graph sketching and
sparsification [135]. They then prove that if the graph is appropriately clusterable
in at most k components, then with high probability this small similarity graph will
have at most k connected components, which they then check by brute force. Using
the classical 2-distance estimator to estimate the distance between random walk
distributions, this leads to a clusterability tester requiring Õ

(
N1/2k7Φ−2

in ε
−5) RW

steps. We can improve this to Õ
(
N1/2k7Φ−1

in ε
−4) QW steps using Proposition 18. It

seems feasible that using the element distinctness technique in [136] an alternative
speedup to Õ

(
N1/3k7Φ−2

in ε
−5) RW steps can be achieved.

It seems appropriate to compare these results to the alternative yet related and
extensive line of algorithms for local graph clustering [133, 134, 137–139] These
algorithms aim to explicitly retrieve a local cluster by accessing it through graph
queries, which could evidently be used to classify nodes or test the graph clus-
terability. Given an internal node of a cluster S for which Φout ∈ O(Φ2

in/log |S|),
Spielman and Teng [133, 134] and Andersen et al [137] explicitly output an approx-
imation ofS by explicitly computing a randomwalk and a PageRank vector overS,
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respectively. The algorithm in [137] requires Õ(|S|Φ−2
in ) steps and graph queries.

Andersen and Peres [138] were able to improve this runtime to Õ(|S|Φ−1
in ) by using

a sophisticated evolving-set process, which corresponds to a Markov chain over
subsets of the nodes, rather than over single nodes. The speedup that they achieve
is the same in nature as our speedup, which basically amounts to speeding up the
random walk behavior. The linear dependence on |S| is however inevitable in their
approach, since it requires to effectively keep track of subsets of size Θ(|S|). In a
graph consisting of k clusters, at least one cluster has size N/k so that this implies a
runtime O(Nk−1Φ−1

in ), as compared to the runtime Õ(N1/2k4Φ−1
in ) that we achieve.

As a finishing note to this chapter, we remark that QFF allows for a very natural
quantization and speedup of random walk algorithms for property testing. The
speedup is complementary to a quantum speedup achieved by Ambainis et al
[123], yet makes a more direct use of quantum walks as a way of simulating and
speeding up random walks. This properly illustrates the benefits of our new QFF
technique, which allows to effectively simulate the dynamics of random walks on
any given timescale, as is crucial for the demonstrated applications.We can contrast
this to the many aforementioned existing quantum walk algorithms which rely on
a speedup of the random walk limit behavior, which would not suffice for testing
e.g. the cluster structure of a graph.

9.4 Quantum 2-distance Estimator: Algorithm and Proof

In this extra section we present the algorithm and proof underlying Theorem 10,
which concerns the estimation of the distance between two random walk distribu-
tions p = Pt |u〉 and q = Pt |v〉. To construct our algorithm, we rewrite

‖p − q‖2 = ‖p‖2 + ‖q‖2 − 2‖p‖‖q‖〈p|q〉,

using the notation 〈p|q〉 = 〈p, q〉/(‖p‖‖q‖). As a consequence, we can retrieve
an estimate by separately estimating ‖p‖, ‖q‖ and 〈p|q〉. Towards estimating ‖p‖
and ‖q‖, we present at the end of this section a simple extension of the quantum
2-norm tester presented earlier in this chapter that allows to estimate the 2-norm up
to multiplicative error, instead of additive error. Towards estimating 〈p|q〉, we first
create approximations of |p〉 = p/‖p‖ and |q〉 = q/‖q‖, on which we subsequently
apply the SWAP test and amplitude estimation. A subtlety is that we cannot simply
use our QFF algorithm to create |p〉 and |q〉 with high probability. Indeed, in order
to apply amplitude estimation we must reflect around these states, and it is not clear
that we can reflect around the output of the QFF algorithm. Instead, we will apply
the unitary amplitude amplification operator to the statesWτ |u, [[〉 andWτ |v, [[〉 to
unitarily rotate these states close to |p〉 and |q〉, omitting the final measurement in
Algorithm 3. This invertible operation will allow to reflect around the output states,
using a similar argument as in Lemma 11. Instead of the amplitude amplification
operator introduced in Section 8.4, we will make use of an enhanced operator by
Yoder and Low [140]. This operator, as described in the below lemma, is better
suited for the case where we only have a lower bound on the success probability.
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Lemma 14 (Fixed Point Amplitude Amplification [140]). Consider a state |ψ〉
and a projector Π[ such that ‖Π[ |ψ〉‖ = λ > 0. For any constant δ > 0, there
exists a family of unitary transformations UL such that if L ≥ λ−1 log(2/δ) then

|〈ψ[ |UL |ψ〉|
2 ≥ 1 − δ2,

where ψ[ = Π[ |ψ〉/‖Π[ |ψ〉‖. We can implement UL using O(L) reflections around
|ψ〉 and around the image of Π[.

Using the appropriate operator UL , we can therefore retrieve approximations
|ψu〉 = ULWτ |u, [[〉 ≈ |p〉 and |ψv〉 = ULWτ |v, [[〉 ≈ |q〉. We can now apply the
SWAP test to these states, combined with amplitude amplification, to retrieve an
estimation of 〈p|q〉. To see this, note that

Π1(USWAP |0〉|ψu〉|ψv〉) =
1
2
|1〉(|ψu〉|ψv〉 − |ψv〉|ψu〉).

As a consequence we can apply quantum amplitude estimation on the state
USWAP |0〉|ψu〉|ψv〉 with respect to the projector Π1 to estimate the quantity

1
2
|ψu〉|ψv〉 − |ψv〉|ψu〉

2
= 1 − |〈ψu |ψv〉|

2 ≈ 1 − |〈p|q〉|2.

Combined with the former estimates of ‖p‖ and ‖q‖ this leads to an estimate of
the 2-distance we were looking for. We formalize this in the following algorithm
and theorem.

Algorithm 7 Quantum 2-distance Estimator
Input: parameters N and d; query access to N-node graph G with degree bound d; starting
vertices u and v; running time t; accuracy parameter ε ; confidence parameter δ
Do:
1: use Algorithm 8 to create estimates α and β of ‖Pt |u〉‖ resp. ‖Pt |v〉‖

to multiplicative error 1/4, with probability 1 − δ/4
2: set µ ∈ O(ε max(α, β)−2)
3: use Algorithm 8 to create new estimates α and β of ‖Pt |u〉‖ resp. ‖Pt |v〉‖

to multiplicative error µ, with probability 1 − δ/4
4: set L ∈ Ω(min(α, β)−1 log min(α, β)−1) and τ ∈ Ω(

√
t ln(N/µ))

5: apply Wτ , UL and USWAP to create the state

|ψ〉 = USWAP |0〉
(
ULWτ |u, [[〉

) (
ULWτ |v, [[〉

)
6: use amplitude estimation to create an estimate γ of ‖Π1 |ψ〉‖ to error µ,

with probability 1 − δ/2
Output: estimate a = α2 + β2 − 2αβ

√
1 − γ2/2

Theorem 11 (Quantum 2-distance Estimator). With probability at least 1 − δ,
Algorithm 7 outputs an estimate a such that��‖Pt |u〉 − Pt |v〉‖2 − a

�� ≤ ε .



112 9 Quantum Property Testing

With a = max{‖Pt |u〉‖, ‖Pt |v〉‖} and a = min{‖Pt |u〉‖, ‖Pt |v〉‖}, the algorithm
requires an expected number of QW steps bounded by

O

(
√

t
(

a
ε
+

a4

aε2

)
log

log N
δ

log3/2 N
ε

)
.

Proof. We prove the theorem for

µ =
1

26
min

(
1,

9ε
16 max(α, β)2

)
, L =

⌈1
λ

log
2
ν

⌉
, τ =

⌈√
2t ln1/2 4

λν

⌉
,

with λ = min(α, β)/(1 + ν) and ν = µ2/11. We will denote p = Pt |u〉, q = Pt |v〉,
|p〉 = p/‖p‖, |q〉 = q/‖q‖, a2 = max(‖p‖, ‖q‖) and a = min(‖p‖, ‖q‖). The
algorithm estimates the quantity ‖p − q‖2 = ‖p‖2 + ‖q‖2 − 2‖p‖‖q‖〈p|q〉 by
separately estimating ‖p‖, ‖q‖ and 〈p|q〉 to error O(ε/a2

).
After the first step, we retrieve with probability at least 1 − δ/4 estimates α and

β such that
3
4
‖p‖ ≤ α ≤

5
4
‖p‖,

3
4
‖q‖ ≤ β ≤

5
4
‖q‖.

This proves that the parameter

µ =
1
26

min
(
1,

ε

(4 max(α, β)/3)2

)
≤

1
26

min
(
1,
ε

a2

)
, (9.2)

and µ ∈ Θ(min(1, ε/a2
)). In step 3 we then create new estimates of ‖p‖ and

‖q‖ to multiplicative error µ. The combined success probability of both steps is
(1−δ/4)2 ≥ 1−δ/2. Following Theorem 12 these steps require an expected number
of QW steps in

O
(√

ta
ε

log
log N
δ

log1/2 N
ε

)
.

In the following steps of the algorithm we estimate 〈p|q〉 = 〈p,q〉
‖p ‖ ‖q ‖ to additive

error µ by combining QFF, amplitude amplification, the SWAP test and amplitude
estimation. Thereto we first rewrite

〈p|q〉 =

√
1 −
‖|p〉|q〉 − |q〉|p〉‖2

2
,

showing that we can use an estimate on ‖|p〉|q〉 − |q〉|p〉‖ to estimate 〈p|q〉. Indeed,
it is easily seen from a function plot that if we create an estimate κ ∈ [0,

√
2] such

that
��‖|p〉|q〉 − |q〉|p〉‖ − κ�� ≤ µ2, then the estimate

√
1 − κ2/2 will be µ-close:���√1 − κ2/2 − 〈p|q〉

��� ≤ µ. (9.3)

We now create an estimate of ‖|p〉|q〉 − |q〉|p〉‖. By Lemma 14 and Theorem 6,
and our choice of L and τ, it holds that

‖ULWτ |u, [[〉 − |p, [[〉‖ ≤ (1 − ν2)‖Wτ |u, [[〉/‖Wτ |u, [[〉‖ − |p, [[〉‖ + ν

≤ (1 − ν2)ν + ν ≤ 2ν,
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with ν = µ2/11, and similarly for ULWτ |v, [[〉. If we set |ψu〉 = ULWτ |u, [[〉 and
|ψv〉 = ULWτ |v, [[〉, then this implies that��‖|ψu〉|ψv〉 − |ψv〉|ψu〉‖ − ‖|p〉|q〉 − |q〉|p〉‖

�� ≤ 8ν(1 + 2ν).

Nowwecan apply amplitude estimation, as inLemma12, to the stateUSWAP |0〉|ψu〉|ψv〉

and projector Π1 with success probability 1 − δ/2 and error ν. If successful this
returns an estimate γ of ‖|ψu〉|ψv〉− |ψv〉|ψu〉‖ to error ν. Combined with the above
inequality this shows that��‖|p〉|q〉 − |q〉|p〉‖ − γ�� ≤ ν + 8ν(1 + 2ν) ≤ µ2.

By (9.3) this leads to the promised bound
��√1 − γ2/2 − 〈p|q〉

�� ≤ µ.
Implementing Wτ , UL and USWAP requires a number of QW steps O(τ)+O(L),

bounded by

O
(√

t
a

log
a
εa

log1/2 Na
ε

)
.

Applying amplitude estimation with success probability 1 − δ/2 and error ν ∈
Θ(ε2/a4

) requires O
(
a4

ε2 log 1
δ

)
reflections around the stateUSWAP |0〉|ψu〉|ψv〉. Fol-

lowing the argument in Lemma 11, we can implement each such reflection using
the same number of QW steps required to implement the operators Wτ , UL and
USWAP. This leads to a total number of QW steps bounded by

O

(√
ta4

aε2 log
1
δ

log
a
εa

log1/2 Na
ε

)
.

Combined with the first approximation part, we find estimates α, β and γ such
that |α− ‖p‖| ≤ µ‖p‖, |β− ‖q‖| ≤ µ‖q‖ and |γ − 〈p|q〉| ≤ µ. This allows to prove
the claimed error of the estimate��α2 + β2 − 2αβγ − ‖p − q‖2

�� ≤ µ(2 + µ)(‖p‖2 + ‖q‖2)
+ 2‖p‖‖q‖

[
µ(2 + µ)(〈p|q〉 + µ) + (1 + µ)2µ

]
≤ 3µ(‖p‖2 + ‖q‖2) + 20µ‖p‖‖q‖
≤ 26µmax(‖p‖, ‖q‖)2 ≤ ε,

using the bound (9.2). The total success probability can be bounded by (1−δ/2)2 ≥
1 − δ, and the expected number of QW steps by

O

(
√

t
(

a
ε
+

a4

aε2

)
log

log N
δ

log3/2 N
ε

)
.

ut

2-norm Estimator to Multiplicative Error

In the above estimator for the 2-distance we wish to estimate ‖Pt |u〉‖ to some
multiplicative error ε , without having a bound on ‖Pt |u〉‖. We present such an
estimator in the below algorithm and theorem.
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Algorithm 8 Quantum Multiplicative 2-norm Estimator
Input: parameters N and d; query access to N-node graph G with degree bound d; starting
vertex u; running time t; accuracy parameter ε ; confidence parameter δ
Do:
1: for k = 1 . . .T ∈ O(log N) do
2: use Algorithm 5 to create estimate α of ‖Pt |u〉‖ to error εk = ε2−k−2,

with probability 1 − δ′ for δ′ ∈ O(δ log−1 N)
3: if α ≥ (1 + ε)2−k , abort for-loop
4: output α

Theorem 12 (Quantum Multiplicative 2-norm Estimator). With probability at
least 1 − δ, Algorithm 7 outputs an estimate α such that��‖Pt |u〉‖ − α

�� ≤ ε ‖Pt |u〉‖.

The algorithm requires an expected number of QW steps bounded by

O
( √

t
ε ‖p‖

log
log N
δ

log1/2 N
ε

)
.

Proof. We will prove the theorem for T = d 1
2 log Ne and δ′ = δ/T . We do so by

showing that with probability at least 1− δ the loop aborts such that the value of α
forms an estimate of ‖p‖ to multiplicative error ε , where we denote p = Pt |u〉. We
first assume that every call to Algorithm 5 is successful, the probability of which
we will bound afterwards. Let ak be the value of α in the k-th iteration, so that
|‖p‖ − ak | ≤ εk . If the loop is stopped at the k-th iteration then ak ≥ (1 + ε)2−k
or equivalently εk ≤ ε

1+ε ak . Combined with the fact that ak ≤ ‖p‖ + εk this shows
that εk ≤ ε

1+ε (‖p‖ + εk) or equivalently εk ≤ ε ‖p‖, so that we find an estimate with
multiplicative error ε .

If the first
⌈

log ‖p‖−1⌉ calls to the 2-norm estimator are successful, then the
algorithm stops and outputs a correct estimate. We can bound this number of calls
byT =

⌈ 1
2 log N

⌉
using the fact that ‖p‖ ≥ N−1/2. The probability that this happens,

i.e., that none of the first
⌈

log ‖p‖−1⌉ implementations of the 2-norm tester fails,
is at least 1 −

⌈
log ‖p‖−1⌉δ′ ≥ 1 − δ if we set δ′ = δ/T . This proves the success

probability of the algorithm.
To bound the runtime, we first note that the k-th iteration runs the 2-norm tester

with error εk = ε2−k and success probability 1 − δ′, which by Theorem 8 requires
a number of QW steps

O
(

2k
√

t
ε

log
log N
δ

log1/2 2kN
ε

)
.

Now we bound the expected number of iterations. If the algorithm succeeds, then
it aborts after

⌈
log ‖p‖−1⌉ iterations. If this does not happen, then either it aborts

earlier, resulting in a number of iterations smaller than
⌈

log ‖p‖−1⌉, or it aborts
later. However, after

⌈
log ‖p‖−1⌉ iterations, any successful call to the 2-norm tester

will abort the algorithm, which happens per iteration with probability at least 1− δ.
In such case the expected number of iterations can be bounded by (1 − δ)−1 ≤ 2
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under the assumption that δ ≤ 1/2. In any case we see that the expected number
of iterations is O(log ‖p‖−1). Now we can use the fact that

∑b
k=0 2k log1/2 2k ∈

O(2b
√

b) ∈ O(‖p‖−1 log1/2 ‖p‖) for b ∈ O(log ‖p‖−1) to bound the total expected
number of QW steps by

O
( √

t
ε ‖p‖

log
log N
δ

log1/2 N
ε

)
. ut



Chapter 10
Other Applications and Outlook

In this chapter we discuss some further applications of QFF. First we consider the
problem of speeding up the escape time of a Markov chain. For a Markov chain that
starts inside a subset of a graph, this quantifies how long it take the Markov chain
to escape this set. We will show that QFF allows to escape large sets quadratically
faster. This is a new result that relates to the long line of graph search algorithms
using quantum walks [3, 4, 21, 22], underlying much of the early work on quantum
walk algorithms. A big open question in this line of work is accelerating the hitting
time of large sets. Our result sheds new light on this issue.

Secondly we show that QFF can be a relevant tool in the field of quantum state
generation [40]. Here the goal is to construct a quantum state that is typically
specified only implicitly, similar to the classical Markov chain Monte Carlo setting.
In the final section we provide some finalizing discussion on the optimality of
the QFF runtime and on its generalization from Markov chains to Hamiltonian
matrices.

10.1 Escaping Sets Quadratically Faster

We first show that QFF allows to speed up the problem of escaping large sets.
Formally, consider a Markov chain P and a subset [ ⊂ V. We define the ε-escape
time E[(ε) as the time at which the Markov chain escaped [, i.e., is located in its
complement [c , with probability at least ε , starting from the stationary distribution
π[ on [. We recall that π[( j) = π( j)/π([) if j ∈ [, and is zero elsewhere. This gives

E[(ε) = min{t | (Ptπ[)([
c) ≥ ε}.

We will generally be interested in ε ∈ Θ(π([c)), and we will loosely define the
escape time E[ as the smallest order of E[(ε) for ε ∈ Θ(π([c)). To get some
intuition on the escape time, we prove some properties of independent interest.

Lemma 15.

• If P is reversible then the escape time is symmetric:

(Ptπ[)([
c) ∈ Θ(π([c)) ⇔ (Ptπ[c )([) ∈ Θ(π([)).

116
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• We can bound E[ ∈ Ω
(
π([c )
Φ([)

)
and E[ ∈ O(τ(π([c))) ∈ O

(
τ log 1

π([c )

)
.

Proof. If P is reversible then P = diag(
√
π)Dt diag(

√
π)−1, with D the symmetric

discriminant matrix. As a consequence, Pt ( j ′, j)π( j) = Dt ( j ′, j)
√
π( j ′)

√
π( j) =

Pt ( j, j ′)π( j ′) and

(Ptπ[)([
c) =

∑
j∈[, j′∈[c Pt ( j ′, j)π( j)

π([)

=

∑
j∈[, j′∈[c Pt ( j, j ′)π( j ′)

π([)
=
π([c)

π([)
(Ptπ[c )([).

This shows that (Ptπ[)([
c) ∈ Θ(π([c)) if and only if (Ptπ[c )([) ∈ Θ(π([)), proving

the first bullet.
To prove the second bullet, recall from Lemma 3, Section 3.2, that (Ptπ[)([

c) ≤

tΦ([), so that we can easily bound E[(ε) ≥ ε/Φ([) and so

E[ ∈ Ω(π([c)/Φ([)).

To see that E[ ∈ O(τ(π([c))) note that from Chapter 1 we know that the distribution
Ptπ[ will be ε-close to π in TV-distance after τ(ε) steps. In particular this implies
that |(Ptπ[)([

c)−π([c)| ≤ ε and so (Ptπ[)([
c) ≥ π([c)−ε ∈ Θ(π([c)) if we choose

π([c) > ε ∈ Θ(π([c)). ut

We will use our QFF algorithm to show that quantum walks can escape large
sets quadratically faster, starting from the superposition |√π[〉. Here we call [ a
large set with respect to a distribution π if π([) ∈ Θ(1). This is in accordance to
the definition in [141]. Combining the two bullets from the above lemma we see
that E[ ∈ O(τ) if [ is a large set. In Example 16 we show that in certain cases it is
much smaller. Similarly to the existing quantum walk search literature, we assume
that the quantum state |√π[〉 is given to us as a primitive. One could also imagine
that the set [ corresponds to a list of nodes that we have already visited, as in a tree
search on a graph, from which it is feasible that we can construct |√π[〉. In the end
of this section we will go more into detail on these assumptions.

Proposition 19 (Escaping in
√
E). Consider a reversible Markov chain P with

an escape time E[(ε) for some large set [ ⊂ V and ε ∈ Θ(π([c)). Then
running QFF(|√π[〉, P,E[(ε), ε ′) with ε ′ =

√
π([)

2π([c ) ε , and measuring the out-
come, returns an element in [c with probability Θ(π([c)). This scheme requires
Θ

(√
E[(ε) log 1

π([c )

)
QW steps.

Proof. The algorithm QFF(|√π[〉, P, t, ε ′) returns a quantum state |ψ〉 for which it
holds that ‖|ψ〉 − |Dt√π[〉‖ ≤ ε ′. This implies that ‖Π[c (|ψ〉 − |Dt√π[〉)‖ ≤ ε ′

and therefore
‖Π[c |ψ〉‖ ≥ ‖Π[c |Dt√π[〉‖ − ε

′.

Using the below lemma, we see that

‖Π[c |Dt√π[〉‖ ≥ ‖Π[c Dt |
√
π[〉‖ ≥

√
π([)

π([c)
(Ptπ[)([

c).
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For t = E[(ε) we know that (Ptπ[)([
c) ≥ ε . Combined with the above inequalities

shows that ‖Π[c |ψ〉‖ ≥
√

π([)
π([c ) ε − ε

′. By our choice ε ′ =
√

π([)
2π([c ) ε , and the fact

that ε ∈ Θ(π([c)), we find that

‖Π[c |ψ〉‖
2 ≥ (1 − 1/

√
2)2

π([)

π([c)
ε2 ∈ Θ(π([)π([c)) ∈ Θ(π([c)),

using our assumption that [ is a large set and hence π([) ∈ Θ(1). As a consequence,
a measurement {Π[c , I −Π[c } on the output state |ψ〉 will return an element of [c
with probability Θ(π([c)). The success probability of the algorithm ‖Dt |

√
π[〉‖

2 ≥

‖Π[Dt |
√
π[〉‖

2 ∈ Θ(1). Since ε ′ ∈ Θ(
√
π([)π([c)) ∈ Θ(

√
π([c)), the algorithm will

require an expected number of QW steps

O

(√
t log

(
1

ε ′‖Dt |v〉‖

))
∈ O

(√
E[(ε) log

1
π([c)

)
. ut

The proof makes use of the below lemma, showing that if the original dynamics
Ptπ[ are in a subset [′ with a certain probability, so that (Ptπ[)([

′) ≥ ε , then the
probability of finding the quantum state |Dt√π[〉 in [′, being ‖Π[′ |Dt√π[〉‖

2 ≥
‖Π[′Dt |

√
π[〉‖

2, can also be lower bounded.

Lemma 16. Let P be a reversible Markov chain, D its discriminant matrix, and
[, [′ ⊆ V. If (Ptπ[)([

′) ≥ ε , then

‖Π[′Dt |
√
π[〉‖

2 ≥
π([)

π([′)
ε2.

Proof. If P is reversible then D = diag(
√
π)−1P diag(

√
π), so that

Dt |
√
π[〉 = diag(

√
π)−1 · Pt ·

∑
j∈[

π( j)√
π([)
| j〉.

The last term we can rewrite as
∑

j∈[
π(j)
√
π([)
| j〉 =

√
π([)

∑
j∈[

π(j)
π([) | j〉 =

√
π([)π[,

proving that

Dt |
√
π[〉 =

√
π([) diag(

√
π)−1(Ptπ[) =

√
π([)(Ptπ[)./

√
π,

where by “./” we mean pointwise division. This shows that

‖Π[′Dt |
√
π[〉‖

2 = π([)‖Π[′(Ptπ[)./
√
π‖2.

In order to bound this last property, we will now make use of the following fact,
which we prove in the below Lemma 17: if p, q ∈ RN , p ≥ 0, q > 0, and
‖p‖1 = ‖q‖1 = 1, then ‖p./√q‖ ≥ 1. If now we set p, q ∈ R |[

′ | by

∀ j ∈ [′ : p( j) =
(Π[′Ptπ[)( j)
‖Π[′(Ptπ[)‖1

, q( j) =
(Π[′π)( j)
‖Π[′π‖1

=
(Π[′π)( j)
π([′)

,

then this implies that

‖Π[′(Ptπ[)./
√
π‖ =

‖Π[′(Ptπ[)‖1√
π([′)

‖p./
√

q‖ ≥
‖Π[′(Ptπ[)‖1√

π([′)
.



10.1 Escaping Sets Quadratically Faster 119

Combining this with the fact that

‖Π[′Dt |
√
π[〉‖

2 = π([)‖Π[′(Ptπ[)./
√
π‖2,

we find the claimed inequality. ut

Lemma 17. If p, q ∈ RN , p ≥ 0, q > 0, and ‖p‖1 = ‖q‖1 = 1, then ‖p./√q‖ ≥ 1.

Proof. We will prove this inequality by induction. It trivially holds for N = 1,
and so it suffices to prove that if it holds for general N = M then it also holds for
N = M + 1. We will now assume the that it holds for N = M . We can rewrite
p, q ∈ RN+1 as

p =
[
αpN

1 − α

]
, q =

[
βqN

1 − β

]
,

with 1 ≥ α ≥ 0, 1 > β > 0, and pN, qN ∈ R
N such that pN ≥ 0, qN > 0 and

‖pN ‖1 = ‖qN ‖1 = 1. Now

‖p./
√

q‖2 =
N+1∑
j=1

p( j)2

q( j)
=
α2

β

N∑
j=1

pN ( j)2

qN ( j)
+
(1 − α)2

1 − β
.

By our induction hypothesis, we know that
∑N

j=1
pN (j)

2

qN (j)
= ‖pN ./

√
qN ‖

2 ≥ 1, so
that

‖p./
√

q‖2 ≥
α2

β
+
(1 − α)2

1 − β
.

For fixed 1 > β > 0, this expression reaches a minimum of 1 if α = β, proving our
statement. ut

In Proposition 19 we use the bound in Lemma 16 for [′ = [c and ε ∈ Θ(π([c)),
so that ‖Π[′Dt |

√
π[〉‖

2 ∈ Ω(π([)π([c)). We then use the condition that [ is a large
set, so that π([) ∈ Θ(1), to bound ‖Π[′Dt |

√
π[〉‖

2 ∈ Ω(π([c)). If [ is not a large set
then we cannot use this bound.

Escaping sets has algorithmic use for graph problems. One could imagine that
a certain well-connected part of a graph was explored in a previous stage, such as
the neighborhood of a local minimum, and we wish to escape this neighborhood
to find new elements. In the following we will discuss a related line of research on
using quantum walks for search problems, and we will compare our new result to
the existing literature.

Quantum Search Algorithms

In a long line of research, including but not limited to [3, 19–22, 37, 106, 107, 142–
145], the usage of quantum walks to speed up the hitting time of Markov chains on
graphs was investigated. The hitting time HT[ of a subset [ ⊂ V is defined as the
expected number of steps before a Markov chain hits an element in [, starting from
its stationary distribution π. One of the most important contributions is the work by
Szegedy [3], in which he introduced the quantum walk formalism underlying this
thesis part. In that paper he showed that, provided thatwe are given the superposition
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|
√
π〉, then a quantumwalk can detect the presence of marked elements inΘ(

√
HT[)

QW steps. Using quantum walks, it turns out that actually finding marked elements
is more difficult than detecting them. A series of efforts culminated in the work
by Krovi, Magniez, Ozols and Roland [22] in which they show that if there is a
unique marked element, |[| = 1, then quantum walks can effectively find a marked
element in Θ(

√
HT[) QW steps. If there are more elements, then their algorithm

needs Θ(
√
HT+[ ) QW steps, where HT+[ is a property called the extended hitting

time, and can be unboundedly larger than the hitting time (see [22, 37, 146] for
discussions). This leaves the problem of quadratically accelerating the hitting time
of large sets as one of the main open questions.

Our result sheds some new light on this issue. Indeed in many cases the escape
time and hitting time are equal, so that our algorithm effectively solves the hitting
problem. Examples of such are when the large set [ is a subtree (a node and all its
descendants) of a tree graph, or a square subset of a lattice. In the below example
we explicitly demonstrate such a setting, showing how our algorithm improves the
algorithm by Krovi et al [22], which provides no acceleration in this case.

Example 16 (Escaping on Z2√
N
−ZN ).Consider the lazy randomwalk on the graph

Z2√
N
− ZN , shown below in Figure 10.1. A cut halfway through the lattice results

in the bipartition ([, [c). Using standard random walk techniques it is easy to see
that π([) = 1

3 + O(N−1/2) ∈ Θ(1) and the escape time E([) ∈ Θ(HT([c)) ∈ Θ(N).
By Proposition 19 we know that quantum walks can escape [ in O(

√
N) QW steps.

Contrarily, we can show that the extended hitting time HT+([c) ∈ Ω(N2), since
it can be bounded by the time it takes to mix from π[ to π (see e.g. [145]), and
it requires Ω(N2) steps to mix on the path ZN . The algorithm by Krovi et al
[22] therefore requires Ω(N) QW steps, providing no speedup with respect to the
classical hitting time. This graph is a typical case where the escape time is much
smaller than the mixing time when starting from π[, so that our algorithm will
outperform the existing algorithm in [22]. 4

Fig. 10.1 Random walk on the graph Z2√
N
−ZN . For the large set [ shown, the escape time and hitting

time are of the same order: Eπ([c )/2([) ∈ Θ(HT([c )) ∈ Θ(N ). Our QFF algorithm allows to escape [
quadratically faster, using Θ(

√
N ) QW steps. Since the extended hitting time HT+([c ) ∈ Ω(N2), the

algorithm by Krovi et al [22] requires Ω(N ) QW steps, providing no speedup.

We also mention that the escape time can be preferable over the hitting time in
cases where the checking cost is high. Given an element j ∈ V, the checking cost
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C is the cost associated to checking whether j ∈ [ or not. For example, C could be
the cost of verifying whether a given element represents a valid solution of some
problem. In accordance with [21], we will denote by S[ the cost of creating the
initial superposition |√π[〉, and by U the cost of implementing a single QW step.
The total expected cost for finding an element of [c using our algorithm is then

Θ

( 1
π([c)

(
S[ + C +

√
E[ log(1/π([c))U

) )
.

Indeed, we create |√π[〉, with a cost S[, then we run our QFF algorithm requiring√
E[ log 1

π([c ) QW steps, and then we perform a measurement and check the solu-
tion. This returns a marked element with probability π([c). Especially in the case
where [c is also a large set, so π([c) ∈ Θ(1), this bound is interesting. In this case
it becomes

Θ
(
S[ + C +

√
E[ log(1/π([c))U

)
,

so that the checking cost is constant. For comparison, the algorithm by Krovi et
al, provided that it also is given the initial state |√π[〉, has a total cost Θ(S[ +√
HT+[c (C+U)). This can be bad if the checking cost is high. In this setting the QW

algorithm by Magniez et al [21] is more interesting. It has a cost

Θ

(
S[ +

1√
π([c)

(
C +

1
√
δ
U
) )
,

with δ the spectral gap of the Markov chain. If π([c) ∈ Θ(1), then E[ ∈ O(τ),
and by Proposition 1 we know that τ(ε) ∈ O

( 1
δ log 1

min j π(j)

)
, so that our algorithm

is at most a log-factor slower, yet it will typically be faster. Indeed, in the above
example we have that π([c) ∈ Θ(1) and E[ ∈ Θ(N) whereas δ ∈ Θ

( 1
N2

)
, so that

our algorithm performs quadratically better. Finally also in the work by Dohotaru
and Høyer [145] a QW algorithm for the case of a unique marked element was
proposed with a total cost Θ

(
S[ +

1√
π([)
C +
√
HT[cU

)
∈ Θ

(
S[ + C +

√
HTc

[
U
)
if

π([) ∈ Θ(1). It seems unlikely that such cost could be generalized to larger sets as
we do.

10.2 Quantum State Generation

We already mentioned that an important feature of our QFF algorithm is that it
allows to simulate and accelerate the intermediate dynamics of a Markov chain.
This complements the bulk of the existing results on QW acceleration of Markov
chains, which focuses on accelerating the limit behavior [3, 15, 22, 41, 42]. A
setting where the intermediate dynamics may be of interest is the problem of
quantum sampling or quantum state generation, as proposed in [40]. This amounts
to the following problem: given a classical algorithm that efficiently samples from
some distribution π, create the corresponding quantum state |

√
π〉 =

∑
j

√
π( j)| j〉.

They show that if we can do so efficiently, then all problems in the complexity class
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SZK called statistical zero knowledge have an efficient solution, and for instance
the graph isomorphism problem can be solved efficiently on a quantum computer.

In many practical cases the classical algorithm for generating π consists of an
efficiently implementable Markov chain P, which is run for a certain number of
steps on some initial state. If the goal distribution π is the stationary distribution
of P, then the corresponding quantum state |

√
π〉 is the stationary state of D. Phase

estimation techniques can then be used to retrieve |
√
π〉. This is the essence of the

quantum sampling algorithms in for instance [40–42]. We will discuss a situation
where π is not the stationary distribution of P but an intermediate state π = Ptej , so
that similar quantum sampling algorithms would fail. This could for example be the
case when G is an infinite graph, or when we are interested in transient dynamics
(e.g., frustrated states or local minima). We demonstrate how QFF can then be used
to generate |

√
π〉. The demonstration is mainly a proof of principle, yet we mention

that the generated states are for example useful resources for a recently discovered
class of quantum error-correcting codes called “binomial quantum codes” [147].

Quantum Simulating a Gaussian

Let P be the transition matrix of a lazy random walk on the integer line Z, standing
still with probability 1/2 and otherwise going left or right with probability 1/4. By
the discrete local limit theorem [148] we know that

(P2te0)( j) = P2t ( j, 0) =
1
√

2πt
e−j

2/(2t) + o
( 1
√

t

)
.

The distribution P2te0 thus approaches a normal distribution Nt with mean 0 and
variance t. Such spreading behavior is very characteristic of classical diffusive
dynamics. In Figure 10.2 we show P2te0 for t = 200. Now we wish to create the
corresponding quantum state, that is, a quantum state |

√
Nt〉 such that

|
√
Nt〉 ∼

∑
j∈Z

e−j
2/(4t) | j〉.

If we simply run the quantum walk W , naturally associated to P as in Section 8.1,
then we find back a very different behavior: it has a very irregular shape, with many
peaks due to interference effects, and a standard deviation in Θ(t). In Figure 10.2
we show the outcome distribution of a measurement of the quantum state W t |0, [〉
for t = 100. We can remedy this by using our QFF scheme, forcing the quantum
walk into taking the classical random walk form.

Generating a quantumGaussian |
√
N t〉 in Õ(t3/4) steps. Since the initial state

|0〉 is a basis state around which we can reflect, we can apply the QFF scheme with
Grover search QFFg(|0〉, P, t, ε) (note that P is symmetric so P = D). This scheme
returns an ε-approximation of the state

Pt |0〉
‖Pt |0〉‖

= |
√
Nt〉 + o

( 1
√

t

)
,

with constant probability in a number of QW steps in
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Fig. 10.2 Quantum Gaussian states for t = 200. QFF allows to approximately generate the quantum
state Pt |0〉/‖Pt |0〉 ‖ = |

√
Nt 〉 + o(1/

√
t) in Õ(t3/4) QW steps. If we are given the initial uniform

superposition |v0 〉, thenwe can generate the quantum state P4t/5 |v0 〉/‖P
4t/5 |v0 〉 ‖ = |

√
Nt 〉+o(1/

√
t)

quadratically faster in O(
√
t) QW steps. For comparison, we also show the measurement outcome

probability distribution if we would simply run the quantum walkW for t steps.

Θ

( √
t

‖Pt |0〉‖

√
log

1
‖Pt |0〉‖

)
.

To bound ‖Pt |0〉‖, we interpret Pt |0〉 as a probability vector, which will approach
a normal distribution with standard deviation O(

√
t). Using the fact that for any

vector v it holds that ‖v‖2 ≥ ‖v‖21/|supp(ν)| with |supp(v)| the size of the support
of v, we can easily see that

‖Pt |0〉‖2 ≥ ‖(Pt |0〉)[−√t,√t]‖
2 ≥

1
2
√

t
‖(Pt |0〉)[−√t,√t]‖

2
1 ∈ Θ(1/

√
t). (10.1)

As a consequence, applying QFFg(|0〉, P, t, ε) succeeds with constant probability
in O

(
t3/4 log1/2 t

)
QW steps, returning an approximation of the state |

√
Nt〉.

Generating a quantum Gaussian |Nt〉 in O(
√

t) steps. The above algorithm
is slowed down by the fact that the initial success probability, before applying
the Grover routine of the QFFg algorithm, is ‖Pt |0〉‖2 ∈ Θ(1/

√
t). This can be

resolved if instead of from an initial state |0〉, we start from an initial uniform
superposition |v0〉 over the states in [−

√
t/2,
√

t/2] (for clarity of exposition assume
that
√

t/2 ∈ Z)

|v0〉 =
1√√
t + 1

√
t/2∑

j=−
√
t/2

| j〉.

Such a situation, where we assume that we are given an initial resource state
|v0〉, is typically considered in quantum simulated annealing schemes [40, 41,
43, 108], and in [149] in a different context. Running QFF(|v0〉, P, t ′, ε) now out-
puts an ε-approximation of the quantum state |Pt′v0〉 with success probability
Θ(1/‖Pt′ |v0〉‖

2). If we choose t ′ = 4t/5, then this state will approximate the
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original goal state |
√
Nt〉1, as is clearly shown in Figure 10.2. We can bound

the success probability by noting that ‖Pt′ |v0〉‖
2 = ‖Pt′v0‖

2/‖v0‖
2, where now

v0 is the uniform distribution over [−
√

t/2,
√

t/2]. We can easily calculate that
‖v0‖

2 = 1/(
√

t + 1), and using a similar reasoning as in (10.1) we find that
‖Pt′v0‖

2 ∈ Θ(1/
√

t). This shows that ‖Pt′ |v0〉‖
2 ∈ Θ(1), so that the scheme will

have a constant success probability. The total number of QW steps required then
becomes

O
( √

t ′

‖Pt′ |v0〉‖
log1/2 1

‖Pt′ |v0〉‖

)
∈ O(
√

t).

This proves that if we are given the uniform superposition |v0〉, we can generate an
approximation of the quantum Gaussian state |

√
Nt〉 in O(

√
t) expected QW steps.

10.3 Discussion and Outlook

Finalizing this thesis part, we wish to provide some further observations and
discussion on the QFF scheme, and present some remaining open questions and
research directions.

Improving the QFF Algorithm: Parameter Dependence and Irreversible Markov
Chains

QFF requires O
(
t1/2 log1/2(ε ‖Dt |v〉‖)−1) QW steps to create an ε-approximation

of the state |Dtv〉 with success probability ‖Dt |v〉‖2. The success probability can
be boosted to a constant using O(1/‖Dt |v〉‖) reflections around the initial state |v〉,
in total requiring a number of QW steps in

O
( √

t
‖Dt |v〉‖

√
log

1
ε ‖Dt |v〉‖

)
.

We will restrict our discussion to this case. As we elaborate below, up to the
log ‖Dt |v〉‖−1-factor it seems that the dependence of the algorithm’s performance
on the parameters t, ε and ‖Dt |v〉‖ is optimal. We leave improvement on the
log ‖Dt |v〉‖−1 factor as an open question.

Towards the t and ε dependency, we can look at the random walk on Z. If we
tolerate an ε error, then we can confine the probability distribution of a t-step
random walk to the Θ

(
t1/2 log1/2 ε−1) neighborhood of the initial state. Since the

QW has the same locality constraints as the RW, it needs Ω
(
t1/2 log1/2 ε−1) QW

steps to spread out over this interval. Notice the parallel with the trade-off in the
Chebyshev approximation, Lemma 10. A very similar argument also shows why
in general QFF cannot work for irreversible Markov chains. Indeed, consider the
Markov chain on Z which simply moves to the right every step, P(i + 1, i) = 1 and
P(i − 1, i) = 0. This walk is clearly not reversible, as the direction of its motion

1 The reduced exponent 4t/5 is a consequence of the fact that the initial state |v0 〉 already has some width, contrary
to |0〉.
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reverses when running the time forward or backward. When starting in the origin,
the walk will be on node t after t steps. A local QW requires Θ(t) steps to reach
this point, so that no fast-forwarding is possible.

Towards the ‖Dt |v〉‖-dependency, we base our intuition on a standard quantum
algorithm that relies on the optimality of Grover search [150], showing that the
number of reflections in Proposition 16 is optimal up to a constant. Roughly, if
QFF starting from | j〉 would allow to return the superposition over the nodes of the
complete graph KN using o(1/‖Dt | j〉‖) = o(

√
N) reflections around | j〉, then we

could run this quantum algorithm backwards to find the element | j〉 using o(
√

N)
reflections around | j〉. This is however known to be impossible.

As a consequence it seems that we cannot improve the t and ‖Dt |v〉‖ dependency
separately, yet it is possible that we can improve their combined dependency. A
similar situation occurred in quantum search algorithms, where we search for
a marked node j using some Markov chain with stationary distribution π and
spectral gap δ. An algorithm by Magniez et al [21] proposed a quantum algorithm
for finding the node j that required Θ(1/

√
δπ( j)) QW steps. This is optimal in both

π( j) and δ separately. The later algorithm by Krovi et al [22] however improved
this to Θ(

√
HT( j)), where the hitting time HT( j) is a parameter that combines both

quantities and can be upper bounded by 1/(δπ( j)). On for example the dumbbell
graph KN −KN , their bound givesΘ(N)which improves the boundΘ(1/

√
δπ( j)) ∈

Θ(N3/2). In Appendix A we show that the same situation arises for quantum state
generation. For QFF we see that a similar improvement might be possible when
considering for instance the random walk on Z, as in Section 10.2. If we run QFF
on the initial state |0〉 then it requires Θ̃(t3/4) QW steps to generate the quantum
Gaussian |

√
Nt〉. If however we first create a quantum state similar to the initial

superposition |v0〉, which by the techniques in Appendix A seems feasible inΘ(
√

t)
QW steps, and then apply QFF, we can generate the quantum Gaussian in Θ(

√
t)

QW steps.

Mixing with QFF

In the light of the first thesis part, we briefly discuss how QFF can be used for
mixing, i.e., classically sampling an element according to some distribution π over
the node set. A very common way to tackle this problem is by solving the more
difficult quantum state generation problem, i.e., creating the quantum state |

√
π〉.

We can then simply measure this state in the node basis to retrieve a classical
sample from π. This approach is taken in a range of papers, containing but not
limited to [40–43, 108, 149]. At the end of Chapter 8 we discussed how QFF allows
to create the quantum state |

√
π〉, for π a uniform distribution, in Θ̃(

√
τ |V|) QW

steps. With additional techniques this can be further improved, see Appendix A.
However, as discussed above, theΩ(

√
|V|) lower bound seems inherent in quantum

algorithms for creating a superposition over the node set (exceptions can be found
when there are additional resources such as access to a sequence of slowly evolving
Markov chains [40, 108] or additional information on π and V [149]). For many
important classical Markov chain algorithms this is overly excessive. For example,



126 10 Other Applications and Outlook

many algorithms build on rapidly mixing Markov chains [70], which have a mixing
time τ ∈ poly(log |V|) (that is, polynomial in log |V|).

A remedy to these considerations is the use of hybrid algorithms which combine
quantum walk and Markov chain techniques. In for instance [15, 39] it is proposed
to use a quantum walk for some t ′ steps, then measure the output, then again
run the quantum walk for t ′ steps, etc. This is very much like the amplification
procedure that we used in the previous thesis part. It is possible that combining our
QFF scheme with such ideas can lead to new results on QW mixing. Indeed, QFF
allows to simulate and accelerate a Markov chain for an intermediate number of
steps (not simply its limit behavior) and could therefore serve as a subroutine of a
quantum-classical mixing scheme. For example, mixing on very clustered graphs
such as small world networks could be accelerated by using QFF merely to escape
the clusters quadratically faster, rather than directly using it to mix over the entire
graph.

Hamiltonian QFF

The Watrous and Ambainis-Szegedy schemes associate a quantum walk to the
symmetric discriminant matrix of a Markov chain. Following for instance Childs
[118], we can easily extend both schemes to associate a quantum walk to a general
Hermitian matrix H = H†. Thereto we adapt the coin toss (7.1) in Watrous’
construction so that it maps

|i, [〉 7→ V |i, [〉 =
∑
j

√
H( j, i)|i, j〉 +

√
1 −

∑
j

|H( j, i)| | j, ]〉,

where ] denotes an additional “garbage” register in which we put the bad part2. In
analogy with Propositions 14 and 15, we define the quantum walk W = R[V†SV ,
and we immediately find that

Π[W |v, [〉 = H |v, [〉 and Π[W t |v, [〉 = Tt (H)|v, [〉.

This generalization has been used for a variety of purposes, the main application
being the discrete simulation of continuous time quantum walks [118, 151] and
Hamiltonian dynamics [111, 113], where H represents the Hamiltonian of a quan-
tum system. Other applications are the evaluation of boolean formulas [117, 151],
and the construction of quantum Gibbs states and quantum SDP solvers [115, 152].

Our QFF algorithm directly carries over to this generalized setting, allowing for
instance to create an approximation of the state |Htv〉 using Õ(

√
t/‖Ht |v〉‖2) QW

steps and queries to the matrix H [153]. We mention two possible applications of
our scheme:

• Different quantum algorithms rely on the implementation of a function of a
Hamiltonian f (H) [119, 152]. In for instance [115] this problem is tackled
in three steps: (i) the Taylor approximation of f is truncated, (ii) an involved

2 We assume that H is rescaled such that
∑

j |H(j, i) | ≤ 1 for all j. We are also neglecting the sign problem when
taking the square root

√
H†(j, i). See [111] for a discussion and an easy solution.
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scheme approximates the truncated Taylor series by a Fourier series, (iii)
Hamiltonian simulation is used to implement each of the Fourier terms. Since
our QFF scheme allows to directly implement terms of the form Hk , we
can use it to bypass steps (ii) and (iii) and directly implement the truncated
Taylor series. Furthermore, applying their method to implement the function
f (H) = Ht requires Θ(t) QW steps, whereas QFF allows to do so in O(

√
t), so

that QFF will also allow to accelerate their scheme for certain functions.
• Hamiltonians can be used to encode optimization problems, with their ground
state corresponding to an optimal solution. Evidently, and this is where these
ideas come from, this is the case in physical quantum systems such as spin
systems, where the Hamiltonian represents the physical Hamiltonian of the
system. However, such ideas have also proven very fruitful in an algorithmic
context, where problems are artificially encoded in a Hamiltonian. See for
instance the fields of adiabatic quantum computation [154] and Hamiltonian
complexity theory [60, 155]. A common way of accessing or gaining infor-
mation on the ground state is by implementing the operator e−Ht , a technique
that is called imaginary time evolution (see e.g. [156, 157] in the context of
matrix product states, or [115] for quantum Gibbs sampling). Since e−H is
also a Hermitian operator, we can use QFF to quadratically fast-forward the
implementation of e−Ht . Moreover, we can not only approximate the limit
case limt→∞ e−Ht , as for instance quantum phase estimation techniques might
also allow, but we can also access the intermediate dynamics, allowing for the
study of frustrated states and local minima. This is similar to the way that the
intermediate random walk dynamics in the clusterability tester of Section 9.3
reveal information about the local clusters.
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Appendix A
Quantum State Generation in O(

√
HT)

In this appendix we present a new result that is relevant to this thesis, yet does not
explicitly require the new techniques introduced in the thesis. We do make use of
the QFF scheme from Chapter 8, but the algorithm can be analyzed making use
only of the limit behavior of the quantum simulation, which can also be achieved
by existing techniques such as quantum phase estimation.

The result thatwewill present is a newquantumwalk algorithm for quantum state
generation from graphs. Informally stated, the result comes down to the following
theorem, where we let HTj denote the hitting time of element j.

Theorem 13. Assume that we are given an element j ∈ V and a reversible Markov
chain P with stationary distribution π. Then we can create a quantum state ε-close
to |
√
π〉 in an expected number of QW steps in

O
(√HTj

ε
log

1
ε

)
.

The algorithm builds on insights and techniques from Krovi et al [22], proposed in
the context of quantum search.

Most relevant to this thesis is the fact that the algorithm also leads to a quantum
speedup for mixing on certain graphs: evidently, if we can create |

√
π〉, then we

can measure the node basis and obtain a classical sample. Our algorithm provides
a quadratic speedup for all graphs for which the hitting time and classical mixing
time are similar. Examples of such are the dumbbell graph and complete binary
trees.

A.1 Folklore: QSG in ˜O
(

1/
√

δπ( j)
)

To better place our result into context, and give some feeling on the topic, we will
present the folklore result that quantum state generation, starting from node j, is
possible in Õ(1/

√
δπ( j)) QW steps, with δ the spectral gap of the Markov chain.

See e.g. [20, 39, 108, 149] for some discussion. In line with our framework, we
can achieve this bound by building on the below lemma, which shows that the state
|Dt j〉 for sufficiently large t will approximate |

√
π〉:

130
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Lemma 18. If t ≥ 1
δ ln 2

ε
√
π(j)

, then|Dt j〉 − |
√
π〉

 ≤ ε .
Proof. By the reversibility of P we know that D = diag(

√
π)−1P diag(

√
π) and so

P and D share the same spectrum. Therefore also D has a unique eigenvector with
eigenvalue, which we can show is |

√
π〉:

D|
√
π〉 = diag(

√
π)−1Pπ = |

√
π〉.

Moreover, the spectral gap of D equals the spectral gap δ of P. Now let
{(λk, |vk〉), 1 ≤ k ≤ |V|} be a complete orthonormal set of eigenpairs of D,
where we set |v0〉 = |

√
π〉. Then we can expand

| j〉 =
∑
〈vk | j〉|vk〉 =

√
π( j)|
√
π〉 +

∑
k>0
〈vk | j〉|vk〉.

Since D has a spectral gap δ, we know that |λk | ≤ 1 − δ and so we can boundDt | j〉 −
√
π( j)|
√
π〉

 = ∑
k>0

λtk 〈vk | j〉|vk〉


≤ (1 − δ)t ≤ e−δt ≤ ε ′,

if t ≥ 1
δ ln 1

ε ′ . Using the inequality in (7.6), Example 12, this implies that
|Dt j〉 −

|
√
π〉

 ≤ 2ε ′/
√
π( j). Choosing ε ′ =

√
π( j)ε/2 finishes the proof. ut

Using this lemma we can use our QFF scheme to create |
√
π〉. This extends

the scheme discussed in Example 15 to non-symmetric reversible Markov chains,
having non-uniform superposition |

√
π〉.

Proposition 20. Let P be an ergodic reversible Markov chain with stationary dis-
tribution π and spectral gap δ, and let j be a node. Running QFFg(| j〉, P, t, ε ′)
for ε ′ = ε/2 and t = 1

δ ln 2
ε ′
√
π(j)

returns a state ε-close to |
√
π〉. The scheme has

success probability at least 1/2, and requires O(1/
√
π( j)) reflections around | j〉

and a number of QW steps in

O
(

1√
δπ( j)

log
1

ε
√
π( j)

)
.

Proof. The QFF scheme returns a quantum state |ψ〉 which is ε ′-close to
Dt | j〉/‖Dt | j〉‖. By the above lemma, and our choice of t, this implies that

‖|ψ〉 − |
√
π〉‖ ≤

|ψ〉 − Dt | j〉
‖Dt | j〉‖

 +  Dt | j〉
‖Dt | j〉‖

− |
√
π〉

 ≤ ε .
By Theorem 6 the scheme requires a number of QW steps in

O
( √

t
‖Dt | j〉‖

√
log

(
1

ε ‖Dt | j〉‖

))
∈ O

(
1

√
δ〈
√
π | j〉

log
1

ε 〈
√
π | j〉

)
. ut
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A.2 Novelty: QSG in ˜O(1/
√

HTj)

Our contribution is to improve this scheme by using the idea of an interpolated
Markov chain, as introduced in the paper by Krovi et al [22] and formerly discussed
in Section 5.3. We recall that an interpolated Markov chain Ps , with respect to an
original Markov chain P and a node j, follows from adding a self loop with some
strength 1 > s > 0 to the node j:

Ps( j, j) = s + (1 − s)P( j, j), Ps(k , j, j) = (1 − s)P(k, j),

and Ps(k, l) = P(k, l) elsewhere. If P is ergodic and reversible then also Ps will
be ergodic and reversible. A crucial feature of these Markov chains is that the
stationary distribution πs of Ps also interpolates between π for s = 0 and ej for
s = 1. Most relevant to us is the fact that if we choose s = 1− π( j)/(1− π( j)), then

πs( j) =
1
2
, πs(k , j) =

1
2
πc(k),

with πcc( j) = 0, and πc(k) = π(k)/(1−π( j)) the stationary distribution restricted to
the complement of j. This is proven in [22, Proposition 4]. It follows that the initial
node j has a large overlap with πs . The key now is that we can apply the following
two-stage routine, building on the fact that |Dt

s j〉
t→∞
→ |
√
πs〉 and |Dtψ〉

t→∞
→ |
√
π〉:

1. Apply QFF(| j〉, Ps, t1, ε) for t1 such that |Dt1
s j〉 is close to |√πs〉. Since

〈
√
πs | j〉 = 1/

√
2, the scheme has a constant success probability ‖Dt1

s | j〉‖ ≥
|〈
√
πs | j〉|2 = 1/2.

2. Apply QFF(|ψ〉, P, t, ε), on the output state |ψ〉, for t2 such that |Dt2ψ〉 ≈
|Dt2
√
πs〉 is close to |

√
π〉. Since

〈
√
π |
√
πs〉 =

√
π( j)

2
+

√
1 − π( j)

2
≥

1
2
,

the scheme has a constant success probability ‖Dt2 |ψ〉‖ ≥ |〈
√
π |ψ〉|2, which is

approximately |〈
√
π |
√
πs〉|

2 ≥ 1/2.

We detail this scheme in Algorithm A.2 and Theorem 14. The total amount of QW
steps is Õ(

√
t1 +
√

t2), which we can bound using the below lemma. We define HTj

as the expected hitting time of node j, starting from the stationary distribution on
its complement πc .

Lemma 19. If s = 1 − π( j)/(1 − π( j)) and t ≥ HTj/(
√

2ε) then

‖|Dt√πs〉 − |
√
π〉‖2, ‖|Dt

s j〉 − |
√
πs〉‖

2 ≤ ε .

Proof. From (7.6) in Example 12 we know that for any two nonzero vectors it holds
that

v/‖v‖ − w/‖w‖ ≤ 2‖v − w‖/‖w‖, so that we can bound

‖|Dt
s j〉 − |

√
πs〉‖ ≤

2
|〈
√
πs | j〉|

‖Dt
s | j〉 − 〈

√
πs | j〉|

√
πs〉‖

= 2
√

2‖Dt
s | j〉 − 〈

√
πs | j〉|

√
πs〉‖.
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Similarly, ‖|Dt√πs〉 − |
√
π〉‖2 ≤ 2

√
2‖Dt |

√
πs〉 − 〈

√
π |
√
πs〉|
√
π〉‖. Therefore it

will suffice to bound the right hand sides, for which we can use techniques very
similar to [22]. Let {(λk(s), |vk(s)〉), 1 ≤ k ≤ |V|} be a complete orthonormal set
of eigenpairs of Ds , where we set |v0〉 = |

√
πs〉. This allows us to expand

‖Dt
s | j〉 − 〈

√
πs | j〉|πs〉‖2 =

∑
k>0
|〈 j |vk(s)〉|2λ2t

k (s).

We can bound

λ2t
k (s) ≤

1
2t

2t−1∑
l=0

λlk(s) ≤
1
2t

1
1 − λk(s)

,

so that ‖Dt
s | j〉 − 〈

√
πs | j〉|

√
πs〉‖

2 ≤ (2t)−1 ∑
k>0 |〈vk(s)| j〉|2/(1− λk(s)). Using the

fact that |√πs〉 = | j〉/
√

2 + |
√
πc〉/

√
(2), and 〈vk(s)|

√
πs〉 = 0 for k > 0 by the

orthogonality of the basis, we can rewrite the sum∑
k>0

|〈vk(s)| j〉|2

1 − λk(s)
=

∑
k>0

|〈vk(s)|
√
πc〉|2

1 − λk(s)
.

It is proven in [22] that the quantity
∑

k>0 |〈vk(s)|
√
πc〉|2)/(1− λk(s)) = HTj/2, so

that we indeed find that ‖Dt
s | j〉 − 〈

√
πs | j〉|

√
πs〉‖

2 ≤ HTj/(4t). We can prove the
bound on ‖Dt |

√
πs〉 − 〈

√
π |
√
πs〉|π〉‖ in a very similar way:

‖Dt |
√
πs〉 − 〈

√
π |
√
πs〉|π〉‖ ≤

1
2t

∑
k>0

|〈vk |
√
πs〉|

2

1 − λk
.

Wecan bound the sumby rewriting |√πs〉 = 1√
2π(j)
|
√
π〉+

(
1/
√

1 − s−1
)
|
√
πc〉/
√

2,

and using the fact that 〈vk |
√
π〉 = 0 for all k > 0, so that∑

k>0

|〈vk |
√
πs〉|

2

1 − λk
=

1
2

( 1
√

1 − s
− 1

)2 ∑
k>0

|〈vk |
√
πc〉|2

1 − λk
.

Again from [22] we know that
∑

k>0 |〈vk |
√
πc〉|2/(1 − λk) = π( j)HTj . By our

choice of s = 1 − π( j)/(1 − π( j)) we see that∑
k>0

|〈vk |
√
πs〉|

2

1 − λk
≤

1
2

( 1
√

1 − s
− 1

)2
π( j)HTj ≤

π( j)
2(1 − s)

HTj .

Since π( j)/(2(1−s)) = (1−π( j))/2wefinally find that ‖Dt |
√
πs〉−〈

√
π |
√
πs〉|π〉‖ ≤

(1 − π( j))HTj/(4t) ≤ HTj/(4t). ut

These bounds show that we can choose t1, t2 ∈ O(HTj) in the QFF scheme,
leading to the below proposition.

Theorem 14. The QSG algorithm QSG(| j〉, P, ε, π( j),HTj) outputs a state ε-close
to |
√
π〉 with success probability at least (1 − ε)/(2

√
2). Otherwise, it outputs

“Fail”. The algorithm requires a number of QW steps in

O
(√HTj

ε
log

1
ε

)
.
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Algorithm 9 Quantum State Generation QSG(| j〉, P, ε, π( j),HTj )

Input:
node state | j〉, Markov chain P, ε > 0, parameters π( j) and HTj

Do:
1: set ε1 = ε/16, ε2 = ε/4, t1 =

⌈ HT j
√

2ε1

⌉
, and t2 =

⌈ HT j
√

2ε2

⌉
2: set s = 1 − π(j)

1−π(j)
3: run QFF(| j〉, Ps, t1, ε1)

If successful, call the output state |ψ〉. Otherwise output “Fail” and stop
4: run QFF(|ψ〉, P, t2, ε2)

If unsuccessful, output “Fail” and stop

Complexity:
⌈√

2t1 ln 2
ε1

⌉
+

⌈√
2t2 ln 2

ε2

⌉
QW steps Success Prob.: ≥ (1 − ε) 1

2
√

2

Proof. For clarity we will analyze the scheme for parameters (ε1, ε2, δ1, δ2), with

t1 =
⌈ HTj
√

2δ1

⌉
, t2 =

⌈ HTj
√

2δ2

⌉
.

We will later fix the parameters. The two QFF stages then become

QFF(| j〉, Ps, t1, ε1, π( j),HTj) and QFF(|ψ〉, Ps, t2, ε2, π( j),HTj).

We can use Theorem 5 to describe both stages:

1. QFF(| j〉, Ps, t1, ε1, π( j),HTj): outputs |ψ1〉 such that

‖|ψ1〉 − |Dt1
s j〉‖ ≤ ε1,

with success probability p1 ≥ (1 − ε1)‖D
t1
s | j〉‖. By our choice of t1 we know

from Lemma 19 that
‖|Dt1

s j〉 − |
√
πs〉‖ ≤ δ1.

2. QFF(|ψ〉, P, t2, ε2, π( j),HTj): outputs |ψ2〉 such that

‖|ψ2〉 − |Dt2ψ1〉‖ ≤ ε2,

with success probability p2 ≥ (1 − ε2)‖Dt2 |ψ1〉‖. By our choice of t2 we know
from Lemma 19 that

‖|Dt2
√
πs〉 − |

√
π〉‖ ≤ δ2.

We can bound the success probabilities by noting that both ‖Dt1
s | j〉‖ and ‖Dt2 |ψ1〉‖

are nonincreasing functions of t, with

lim
t→∞
‖Dt1

s | j〉‖ = |〈
√
πs | j〉| and lim

t→∞
‖Dt2 |ψ1〉‖ = |〈

√
π |ψ1〉|.

As a consequence, p1 ≥ (1−ε1)|〈
√
πs | j〉| = (1−ε1)/

√
2 and p2 ≥ (1−ε2)|〈

√
π |ψ1〉|.

To bound |〈
√
π |ψ1〉| we use that

‖|ψ1〉 − |
√
πs〉‖

≤ ‖|ψ1〉 − |Dt1
s j〉‖ + ‖|Dt1

s j〉 − |
√
πs〉‖ ≤ ε1 + δ1,

(A.1)
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and therefore |〈
√
π |ψ1〉− 〈

√
π |
√
πs〉| ≤ ε1+δ1. Using the reverse triangle inequality

this proves that |〈
√
π |ψ1〉| ≥ |〈

√
π |
√
πs〉| − ε1 − δ1. Explicit calculation shows that

|〈
√
π |
√
πs〉| =

√
π( j)/2 +

√
(1 − π( j))/2 ≥ 1/2, so that finally

p1 ≥ (1 − ε1)
1
√

2
, p2 ≥ (1 − ε2)

(1
2
− ε1 − δ1

)
.

Now we will bound ‖|
√
π〉 − |ψ2〉‖. Using the triangle inequality we directly see

that

‖|
√
π〉 − |ψ2〉‖

≤ ‖|
√
π〉 − |Dt2

√
πs〉‖ + ‖|Dt2

√
πs〉 − |Dt2ψ1〉‖ + ‖|Dt2ψ1〉 − |ψ2〉‖

≤ ε2 + δ2 + ‖|Dt2
√
πs〉 − |Dt2ψ1〉‖.

Now we can again use the fact that for any two nonzero vectors it holds thatv/‖v‖ − w/‖w‖ ≤ 2‖v − w‖/‖w‖, so that

‖|Dt2
√
πs〉 − |Dt2ψ1〉‖ ≤

2
‖Dt2 |

√
πs〉‖
‖Dt2 (|

√
πs〉 − |ψ1〉)‖

≤
2

|〈
√
πs |
√
π〉|
‖ |
√
πs〉 − |ψ1〉‖.

By (A.1) and the fact that |〈
√
π |
√
πs〉| ≥

1
2 this shows that ‖|Dt2

√
πs〉 − |Dt2ψ1〉‖ ≤

4(ε1 + δ1). Combined with the above inequality this gives

‖|
√
π〉 − |ψ2〉‖ ≤ 4(ε1 + δ1) + ε2 + δ2.

So finally we can choose ε1 = δ1 = ε/16 and ε2 = δ2 = ε/4 to yield ‖|
√
π〉−|ψ2〉‖ ≤

ε . The total success probability p1p2 is then bounded by

p1p2 ≥

√
3

2
(1 − ε1)(1 − ε2)

(1
2
− ε1 − δ1

)
=

1
2
√

2

(
1 −

ε

16

) (
1 −

ε

4

)2
≥

1
2
√

2
(1 − ε). ut

A.3 Discussion

We proposed a quantum walk algorithm for quantum state generation, building
on the work of Krovi et al [22]. Starting from a node j, the algorithm creates an
ε-approximation of the goal state |

√
π〉 in O

(√
HTj/ε log ε−1) expected QW steps.

It is a well known result, see e.g. [63, Lemma 3.17], that HTj ≤ 1/(δπ( j)), so
that the algorithm improves on the folklore bound. Indeed, in many cases HTj is
significantly lower than 1/(δπ( j)), some examples of which we will discuss below.

A nice application of the algorithm is for quantum search. Krovi et al [22] have
shown that quantum walks allow to hit a marked element k in O(

√
HTk) QW steps,

quadratically faster than the classical Markov chain. A caveat to their algorithm,
and in fact to most quantum search algorithms [3, 21, 106], is that it requires
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to start from the state |
√
π〉, rather than starting from a single node. A notable

exception is the work by Belovs [144, 158], who constructed an algorithm that
allows to detect the presence of a marked element k, starting from an element j, in
O(

√
HT( j, k) + HT(k, j)) QW steps, with HT(k, j) the hitting time of k starting in

element j. To the best of our knowledge, this is the only result on quantum search
when starting from a single element. We provide a new result: starting from an
element j, we can find an element k in a number of expected QW steps in

O
(√

HTj +
√
HTk

)
.

The total cost of the algorithm is

O
( (√

HTj +
√
HTk

)
(U + C)

)
,

where U is the update cost of implementing a step of the quantum walk, and C is the
checking cost (see Section 10.1 for definitions). The algorithm in [22] for finding
a marked element k is O(S +

√
HTk(U + C)), with S the setup cost of creating the

superposition |
√
π〉. It seems reasonable that our algorithm is not optimal for this

task, and that along the line of Belovs’ work a quantum algorithm should exist
which finds an element k, starting from j, in Θ(

√
HT( j, k) + HT(k, j)) expected

QW steps.
The algorithm also has relevance for the task of accelerating classical mixing

using quantumwalks, themain topic of the first thesis part. Herewewish to return an
element ofV distributed according to π, which is clearly easier than creating |

√
π〉.

A classical Markov chain approximately performs this task in τ ∈ Ω
(
δ−1) Markov

chain steps, so that we find a quadratic speedup if HTj ∈ O(δ−1). This is the case
for our running example, the dumbbell graph KN −KN , where HT, δ−1 ∈ Θ(1/N2)
[63]. Our algorithm allows to approximately create the superposition |

√
π〉 in O(N)

QW steps. Measuring this state returns a classical sample quadratically faster than
a random walk. Note that in this case the folklore bound (δπ( j))−1/2 ∈ O(N3/2).

Another relevant example is the complete binary treeT2,k of depth k, having N =
2k+1 − 1 nodes and spectral gap δ ∈ Θ(1/N). If j is a leaf, then HTj ∈ Θ(N log N)
[63] and so we approximately create the superposition |

√
π〉 in O(

√
N log N) QW

steps. If j is the root node, then HTj ∈ Θ(N) [63], so that our algorithm only
requires O(

√
N) QW steps. The folklore bound in this case is (δπ( j))−1/2 ∈ O(N),

which we quadratically improve. This case is also interesting with respect to the
results from the first thesis part, where we showed how any invariant quantum walk
necessarily requires Ω(1/ΦG,π) steps. For the binary tree this gives a lower bound
of Ω(N) QW steps, as we discussed in Example 11. This is clearly broken by our
algorithm. Since the algorithm is nevertheless local, building on local quantum
walks, this implies that it is not invariant, as defined in the first part of this thesis.
This suggests that the algorithm should be interpreted as a preparation scheme
rather than a mixing scheme, missing the stabilization properties of Markov chain
and quantum walk mixing schemes as considered in [39, 51, 53].
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