Quantum Speedup for Graph Sparsification,
Cut Approximation and Laplacian Solving

Simon Apers! Ronald de Wolf?

Unria, France and CWI, the Netherlands
2QuSoft, CWI and University of Amsterdam, the Netherlands

Simons Institute, April 2020

(arXiv:1911.07306)

Graphs

graphs are nice

graphs are nice

@ all over computer science, discrete math, biology, . ..

graphs are nice

@ all over computer science, discrete math, biology, . ..

@ describe relations, networks, groups, ...

graphs are nice

@ all over computer science, discrete math, biology, . ..

@ describe relations, networks, groups, ...

sparse graphs are nicer

graphs are nice

@ all over computer science, discrete math, biology, . ..

@ describe relations, networks, groups, ...

sparse graphs are nicer

@ less space to store

graphs are nice

@ all over computer science, discrete math, biology, . ..

@ describe relations, networks, groups, ...

sparse graphs are nicer

@ less space to store
@ less time to process

graphs are nice

all over computer science, discrete math, biology, . ..
describe relations, networks, groups, ...

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

graphs are nice

all over computer science, discrete math, biology, . ..
describe relations, networks, groups, ...

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

Graph Sparsification

undirected, weighted graph G = (V, E, w)

= (
n nodes and m edges, m < (%)

undirected, weighted graph G = (V, E, w)
n nodes and m edges, m < (})

l

adjacency-list access
query (i, k) returns k-th neighbor j of node i

Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities

Graph Sparsification

what are “interesting quantities”?

Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, ...

Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, ...

— typically captured by graph Laplacian L

Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, ...

— typically captured by graph Laplacian L

Graph Laplacian

equivalently,

Graph Laplacian

equivalently,

Graph Laplacian

equivalently,

Graph Laplacian

mainly interested in quadratic forms in L;

Graph Laplacian
mainly interested in quadratic forms in L;

xTLGx

Graph Laplacian

mainly interested in quadratic forms in L;

xLox = Z w(i,j) xTL(,-J)x
(i)

Graph Laplacian

mainly interested in quadratic forms in L;

x"Lox = ZW(iJ) XL jx = ZW(iJ) (x(i) — x(j))?
(i) (i)

Graph Laplacian

mainly interested in quadratic forms in L;

x"Lox = ZW(iJ) XL jx = ZW(iJ) (x(i) — x(j))?
(i) (i)

Graph Laplacian

mainly interested in quadratic forms in L;

xLgx = ZW(iJ) XL jx = Z w(i,j) (x(i) — x(j))>
(i) (i)

e.g., if xg indicator vectoron S C V:

Graph Laplacian

mainly interested in quadratic forms in L;
M Lox = w(ij) X Lipx =Y wli,j) (x(i) = x(j))?
(i) (i)

e.g., if xg indicator vectoron S C V:

ngGx S

Graph Laplacian

mainly interested in quadratic forms in L;

xLgx = ZW(iJ) XL jx = Z w(i,j) (x(i) — x(j))>
(i) (i)

e.g., if xg indicator vectoron S C V:

1

xELgxs = Zw(i,j) (xs(i) — xs(j))?
(i)

Graph Laplacian

mainly interested in quadratic forms in L;

xLgx = ZW(iJ) XL jx = Z w(i,j) (x(i) — x(j))>
(i) (i)

e.g., if xg indicator vectoron S C V:

1

xiLoxs = > w(i.j)xs(i) —xs())> = > w(i))

(iJ) i€S,jese

Graph Laplacian

mainly interested in quadratic forms in L;

xLgx = ZW(iJ) XL jx = Z w(i,j) (x(i) — x(j))>
(i) (i)

e.g., if xg indicator vectoron S C V:

1

xELgxs = Zw(i,j)(xg(i) —xs5())* = Z w(i,j) = cutg(S)

(iJ) i€S,jese

Graph Laplacian

as it turns out,
quadratic forms

x'Lgx and xTLgx forx e R"

describe cut values, eigenvalues,
effective resistances, hitting times, ...

Graph Laplacian

as it turns out,
quadratic forms

x'Lgx and xTLgx forx e R"
describe cut values, eigenvalues,

effective resistances, hitting times, ...

— interested in preserving quadratic forms!

Spectral Sparsification

10

Spectral Sparsification
= approximately preserve all quadratic forms

AT A e
” /\ ‘\ il s S\
PSS 2L
— N\

10

Spectral Sparsification

= approximately preserve all quadratic forms

z‘ﬁ’i‘\ e

0 -
'/Ar“ =

definition: H is e-spectral sparsifier of G

\

10

Spectral Sparsification

= approximately preserve all quadratic forms

A A e
’ /\ ‘\ il S\

Pas
— N\ =Y

=\

N

definition: H is e-spectral sparsifier of G iff
X Lgx = (1+e)x"Lgx forall x € R”

10

Spectral Sparsification

= approximately preserve all quadratic forms

A A e
’ /\ ‘\ il S\

Pas
— N\ =Y

=\

N

definition: H is e-spectral sparsifier of G iff
X Lgx = (1+e)x"Lgx forall x € R”

equivalently:
xTLjx = (1£0(e))x"Lix

10

Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is e-spectral sparsifier of G iff
X Lgx = (1+e)x"Lgx forall x € R”

equivalently:
xTLjx = (1£0(e))x"Lix

equivalently:
(1 — E)LG j LH j (1 +6)LG

10

Spectral Sparsification

how sparse can we go ?

11

Spectral Sparsification

how sparse can we go ?

Karger 94, Benczur-Karger '96,
Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

11

Spectral Sparsification

how sparse can we go ?

Karger 94, Benczur-Karger '96,
Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem
@ every graph has e-spectral sparsifier H with a number of edges

0(n/é?)

11

Spectral Sparsification

how sparse can we go ?

Karger 94, Benczur-Karger '96,
Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem
@ every graph has e-spectral sparsifier H with a number of edges

0(n/é?)

@ H can be found in time O(m)

11

Spectral Sparsification

how sparse can we go ?

Karger 94, Benczur-Karger '96,
Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem
@ every graph has e-spectral sparsifier H with a number of edges

0(n/é?)

@ H can be found in time O(m)

(only relevant when e > /n/m)

11

Applications

important building stone of many

O(m) cut approximation algorithms

12

Applications

important building stone of many

O(m) cut approximation algorithms

@ max cut (Arora-Kale '07)

@ min cut (Karger '00)

@ min ss-cut (Peng '16)

@ sparsest cut (Sherman *09)
o ...

12

Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

13

Applications
crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system Lgx = b can be
approximately solved in time O(m).

13

Applications
crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system Lgx = b can be
approximately solved in time O(m).

= Godel prize 2015

13

Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system Lgx = b can be
approximately solved in time O(m).

@ electrical flows and max flows
@ spectral clustering

O(m) approximation algorithms for @ random walk properties
@ learning from data on graphs
° ...

13

Our Contribution

classically, O(m) runtime is optimal for most graph algorithms

14

Our Contribution

classically, O(m) runtime is optimal for most graph algorithms

can we do better using a quantum computer?

14

Our Contribution

classically, O(m) runtime is optimal for most graph algorithms

can we do better using a quantum computer?

(disclaimer: not with this one we won't)

14

Our Contribution

this work:

15

Our Contribution

this work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(/mn/e)

15

Our Contribution

this work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(/mn/e)
@ matching Q(y/mn/¢) lower bound

15

Our Contribution

this work:
@ quantum algorithm to find e-spectral sparsifier H in time

O(v/mn/e)
@ matching Q(y/mn/¢) lower bound

© applications: quantum speedup for

max cut, min cut, min sz-cut, sparsest cut, ...

Laplacian solving, approximating resistances and random walk
properties, spectral clustering, ...

15

this work:
@ quantum algorithm to find e-spectral sparsifier H in time
O(v/mn/e)
@ matching Q(,/mn/e) lower bound
© applications: quantum speedup for

max cut, min cut, min sz-cut, sparsest cut, . . .

Laplacian solving, approximating resistances and random walk
properties, spectral clustering, ...

16

Classical Sparsification Algorithm

17

Classical Sparsification Algorithm

Sparsification by edge sampling:
@ associate probabilities {p.} to every edge

@ keep every edge e with probability p,, rescale its weight by 1/p,

17

Classical Sparsification Algorithm

Sparsification by edge sampling:
@ associate probabilities {p.} to every edge
@ keep every edge e with probability p,, rescale its weight by 1/p,

ensures that

17

Classical Sparsification Algorithm

Sparsification by edge sampling:
@ associate probabilities {p.} to every edge
@ keep every edge e with probability p,, rescale its weight by 1/p,

ensures that

and hence

E(Ly) = E (Z weLe) — Lo

17

Classical Sparsification Algorithm

Sparsification by edge sampling:
@ associate probabilities {p.} to every edge

@ keep every edge e with probability p,, rescale its weight by 1/p,

ensures that

and hence

E(Ly) = E (Z weLe) — Lo

how to ensure concentration?

17

Classical Sparsification Algorithm

Sparsification by edge sampling:
@ associate probabilities {p.} to every edge

@ keep every edge e with probability p,, rescale its weight by 1/p,

ensures that

and hence

E(Ly) = E (Z weLe) — Lo

how to ensure concentration?

[Spielman-Srivastava '08]:
give high p, to edges with high effective resistance!

17

Classical Sparsification Algorithm

N N
e e
W W

effective resistance R;

Classical Sparsification Algorithm

effective resistance R;

= resistance between i,
after replacing all edges with resistors

18

Classical Sparsification Algorithm

effective resistance R;

= resistance between i,
after replacing all edges with resistors

(Ohms faw) voltage difference required between i,

when sending unit current from i to j

18

Classical Sparsification Algorithm

effective resistance R;

= resistance between i,
after replacing all edges with resistors

(Ohms faw) voltage difference required between i,

when sending unit current from i to j

— small if many short and parallel paths from i to ;!

18

Classical Sparsification Algorithm

effective resistance R;

red edge: R, = 1

black edges: R, € O(1/n)

18

? how to identify high-resistance edges ?

19

? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

19

? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

@ subgraph F of G with O(n) edges

19

? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

@ subgraph F of G with O(n) edges
@ all distances stretched by factor < logn: for all i,;

dg(i,j) < dr(i,j) < log(n) dg(i,J)

19

? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

@ subgraph F of G with O(n) edges
@ all distances stretched by factor < logn: for all i,;

dg(i,j) < dr(i,j) < log(n) dg(i,J)

19

? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

@ subgraph F of G with O(n) edges
@ all distances stretched by factor < logn: for all i,;j

dg(i,j) < dr(i,j) < log(n) dg(i,J)

20

[Koutis-Xu *14]:
a graph spanner must contain all high-resistance edges!

proof idea forR, = 1:

21

[Koutis-Xu *14]:
a graph spanner must contain all high-resistance edges!

proof idea forR, = 1:

e if R, = 1, there are no alternative paths between endpoints

21

[Koutis-Xu *14]:
a graph spanner must contain all high-resistance edges!

proof idea forR, = 1:

e if R, = 1, there are no alternative paths between endpoints
@ hence, e must be present in spanner

21

Classical Sparsification Algorithm

Iterative sparsification:
@ construct O(1/¢2) spanners and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

22

Classical Sparsification Algorithm

Iterative sparsification:
@ construct O(1/¢2) spanners and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

(i.e., we set p, = 1 for spanner edges and p, = 1/2 for other edges)

22

Classical Sparsification Algorithm

Iterative sparsification:
@ construct O(1/¢2) spanners and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

(i.e., we set p, = 1 for spanner edges and p, = 1/2 for other edges)

Theorem (Spielman-Srivastava ‘08, Koutis-Xu ’14)
W.h.p. outout is e-spectral sparsifier with m/2 + O(n/€?) edges

22

Classical Sparsification Algorithm

Iterative sparsification:
@ construct O(1/¢2) spanners and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

(i.e., we set p, = 1 for spanner edges and p, = 1/2 for other edges)

Theorem (Spielman-Srivastava ‘08, Koutis-Xu ’14)
W.h.p. outout is e-spectral sparsifier with m/2 + O(n/€?) edges

— repeat O(log n) times: e-spectral sparsifier with O(n/e?) edges

o S

On/e?)

22

Quantum Sparsification Algorithm

23

Quantum Sparsification Algorithm
= quantum spanner algorithm
+ k-independent oracle

+ a magic trick

23

Quantum Spanner Algorithm

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:
@ setF=(V,Er=10)

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:
@ setF=(V,Er=10)
@ iterate over every edge (i,j) € E\EF:
if 0r(i,j) > logn, add (i,j) to F

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:

@ setF=(V,Er=10)
@ iterate over every edge (i,j) € E\EF:
if 67 (i,j) > logn, add (i,j) to F

@ quantum greedy spanner algorithm:

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:
@ setF=(V,Er=10)
@ iterate over every edge (i,j) € E\EF:
if 67 (i,j) > logn, add (i,j) to F
@ quantum greedy spanner algorithm:
@ setF=(V,Er=10)

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:

@ setF=(V,Er=10)
@ iterate over every edge (i,j) € E\EF:
if 67 (i,j) > logn, add (i,j) to F

@ quantum greedy spanner algorithm:

@ setF=(V,Er=10)
@ until no more edges are found, do:

Grover search for edge (i,j) such that 65 (i,j) > logn. add (i,j) to F

24

Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:

@ setF=(V,Er=10)
@ iterate over every edge (i,j) € E\EF:
if 67 (i,j) > logn, add (i,j) to F

@ quantum greedy spanner algorithm:

@ setF=(V,Er=10)
@ until no more edges are found, do:
Grover search for edge (i,j) such that 65 (i,j) > logn. add (i,j) to F

— can prove: O(n) edges are found using O(y/mn) queries
24

Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

O(v/mn)

25

Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

O(v/mn)

= (roughly)

[Thorup-Zwick '01]

classical construction of a spanner by growing
small shortest-path trees (SPTs)

25

Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

O(v/mn)

= (roughly)

[Thorup-Zwick '01]

classical construction of a spanner by growing
small shortest-path trees (SPTs)

+
[Durr-Heiligman-Hayer-Mhalla '04]

quantum speedup for constructing SPTs

25

Quantum Sparsification Algorithm

Iterative sparsification:
@ use quantum algorithm to construct O(1/€?) spanners, keep
these edges
@ keep any remaining edge with probability 1/2, and double its
weight

26

Quantum Sparsification Algorithm

Iterative sparsification:
@ use quantum algorithm to construct O(1/€?) spanners, keep
these edges
@ keep any remaining edge with probability 1/2, and double its
weight

— after 1 iteration: “intermediate” graph with ~ m /2 edges

26

Quantum Sparsification Algorithm

Iterative sparsification:
@ use quantum algorithm to construct O(1/€?) spanners, keep
these edges
@ keep any remaining edge with probability 1/2, and double its
weight

— after 1 iteration: “intermediate” graph with ~ m /2 edges

? how to keep track in time o(m) ?

26

Quantum Sparsification Algorithm

Iterative sparsification:

@ use quantum algorithm to construct O(1/€?) spanners, keep
these edges

@ keep any remaining edge with probability 1/2, and double its
weight

— after 1 iteration: “intermediate” graph with ~ m /2 edges

? how to keep track in time o(m) ?

|:> >
O(n/62)

adj acency list ? output

26

Query Access to Random String

¢ maintain (offline) random string x € {0, 1}(3)

[1]ofol1[1[0[1]1[1[0[1]0][0]
/ N\

edge (i,j) discarded edge (7,;) kept

27

Query Access to Random String

¢ maintain (offline) random string x € {0, 1}(3)

[1]ofol1[1[0[1]1[1[0[1]0][0]
/ N\

edge (i,j) discarded edge (7,;) kept
(oblivious to the graph!)

27

Query Access to Random String

¢ maintain (offline) random string x € {0, 1}(3)

[1]ofol1[1[0[1]1[1[0[1]0][0]
/ N\

edge (i,j) discarded edge (7,;) kept
(oblivious to the graph!)

query (i, k) — (j,x(i.j))

27

Query Access to Random String

¢ maintain (offline) random string x € {0, 1}(3)

[1]ofol1[1[0[1]1[1[0[1]0][0]
/ N\

edge (i,j) discarded edge (7,;) kept
(oblivious to the graph!)

query (i, k) — (j,x(i.j))

.
m mj2 5(”/62)
t t |

adjacency list adj. list + random string output

27

Query Access to Random String

problem:
time Q(n?) to generate random x < {0, 1}(3)

28

Query Access to Random String

problem:
time Q(n?) to generate random x < {0, 1}('21)

@ classical solution: “lazy sampling” (generate bits on demand)

28

Query Access to Random String

problem:
time Q(n?) to generate random x < {0, 1}('21)

@ classical solution: “lazy sampling” (generate bits on demand)

@ quantum this is not possible: can address all bits in superposition

28

Rid of Random String

luckily, we can outsmart this quantum demon:

29

Rid of Random String

luckily, we can outsmart this quantum demon:

Fact

k/2-query quantum algorithm cannot distinguish uniformly random
string from k-wise independent string *

= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf 98]

29

Rid of Random String

luckily, we can outsmart this quantum demon:

Fact

k/2-query quantum algorithm cannot distinguish uniformly random
string from k-wise independent string *

= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf 98]

* k-wise independent string x € {0, 1}(3)
behaves uniformly random on every subset of k bits

29

Rid of Random String

aim for quantum algorithm making ~ /mn queries,
so suffices to use k-wise independent (})-bit string with k ~ /mn

30

Rid of Random String

aim for quantum algorithm making ~ /mn queries,
so suffices to use k-wise independent (})-bit string with k ~ /mn

? can we efficiently query such a string ?
(without explicitly generating it!)

30

Rid of Random String

aim for quantum algorithm making ~ /mn queries,
so suffices to use k-wise independent (})-bit string with k ~ /mn

? can we efficiently query such a string ?
(without explicitly generating it!)

— use recent results on “efficient k-independent hash functions”

30

Rid of Random String

aim for quantum algorithm making ~ /mn queries,
so suffices to use k-wise independent (})-bit string with k ~ /mn

? can we efficiently query such a string ?
(without explicitly generating it!)
— use recent results on “efficient k-independent hash functions”
Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time 5(k) a k-independent oracle that
simulates queries to k-wise independent string in time O(1) per query.

30

Rid of Random String

aim for quantum algorithm making ~ /mn queries,
so suffices to use k-wise independent (})-bit string with k ~ /mn

? can we efficiently query such a string ?
(without explicitly generating it!)
— use recent results on “efficient k-independent hash functions”
Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time 5(k) a k-independent oracle that
simulates queries to k-wise independent string in time O(1) per query.

Corollary

Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time O(k) without random string.

30

Quantum Sparsification Algorithm

31

Quantum Sparsification Algorithm

Quantum iterative sparsification:
@ use quantum algorithm to construct 5(1/62) spanners, keep
these edges

@ construct k-independent oracle that marks remaining edges with
probability 1/2, and double weights

31

Quantum Sparsification Algorithm

Quantum iterative sparsification:
@ use quantum algorithm to construct 5(1/62) spanners, keep
these edges

@ construct k-independent oracle that marks remaining edges with
probability 1/2, and double weights

— per iteration: complexity O(y/mn/€?)

31

Quantum Sparsification Algorithm

Quantum iterative sparsification:
@ use quantum algorithm to construct 5(1/62) spanners, keep
these edges

@ construct k-independent oracle that marks remaining edges with
probability 1/2, and double weights

— per iteration: complexity O(y/mn/€?)

Theorem

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€?) edges in time

O(/mn/*)

31

A Magic Trick

32

A Magic Trick

to improve e-dependency:

33

A Magic Trick
to improve e-dependency:

@ create rough e-spectral sparsifier H for e = 1/10
— O(y/mn) using our quantum algorithm

33

A Magic Trick
to improve e-dependency:

@ create rough e-spectral sparsifier H for e = 1/10
— O(y/mn) using our quantum algorithm

@ estimate effective resistances for H
— O(n) using classical Laplacian solving

33

A Magic Trick
to improve e-dependency:
@ create rough e-spectral sparsifier H for e = 1/10
— O(y/mn) using our quantum algorithm

@ estimate effective resistances for H
— O(n) using classical Laplacian solving
= approximation of effective resistances of G !

33

A Magic Trick
to improve e-dependency:

@ create rough e-spectral sparsifier H for e = 1/10
— O(y/mn) using our quantum algorithm

@ estimate effective resistances for H
— O(n) using classical Laplacian solving
= approximation of effective resistances of G !

@ sample O(n/e?) edges from G using these estimates
— in time O(y/mn/e?) using Grover search

33

A Magic Trick
to improve e-dependency:
@ create rough e-spectral sparsifier H for e = 1/10
— O(y/mn) using our quantum algorithm

@ estimate effective resistances for H
— O(n) using classical Laplacian solving
= approximation of effective resistances of G !

@ sample O(n/e?) edges from G using these estimates
— in time O(y/mn/e?) using Grover search

Theorem (our main result)

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€*) edges in time
O(y/mn/e)

33

A Magic Trick
to improve e-dependency:
@ create rough e-spectral sparsifier H for e = 1/10
— O(y/mn) using our quantum algorithm

@ estimate effective resistances for H
— O(n) using classical Laplacian solving
= approximation of effective resistances of G !

@ sample O(n/e?) edges from G using these estimates
— in time O(y/mn/e?) using Grover search

Theorem (our main result)

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€*) edges in time
O(y/mn/e)

* assuming € > \/n/m, it holds that O(y/mn/¢) € O(m) "

this work:

@ quantum algorithm to find e-spectral sparsifier H in time
O(y/mne)

@ matching Q(/mn/¢) lower bound

© applications: quantum speedup for

max cut, min cut, min sz-cut, sparsest cut, ...

Laplacian solving, approximating resistances and random walk
properties, spectral clustering, ...

34

Matching Quantum Lower Bound

intuition:

finding kK marked elements among M elements takes

Q(vMk) quantum queries

35

Matching Quantum Lower Bound

intuition:

finding kK marked elements among M elements takes

Q(vMk) quantum queries

“hence”

finding O(n/%) edges of sparsifier among m edges takes time

Q(y/mne)

35

Unsparsifiable Graph

36

Unsparsifiable Graph

random bipartite graph on 1/¢? nodes

36

Unsparsifiable Graph
€2n copies
= random graph H(n, €) with n nodes and O(n/e?) edges

(e o (o o)

Unsparsifiable Graph

Theorem (Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang ’16)

€2n copies
= random graph H(n, €) with n nodes and O(n/e?) edges

(o o\ (e o)
p
\8 B\ Z

Any e-spectral sparsifier of H(n,e) must contain a constant fraction of

its edges.

37

Hiding a Sparsifier

38

Hiding a Sparsifier

given n, m, €:

we “hide” H(n, €) in larger G(n, m, ¢) with n nodes and m edges

38

Hiding a Sparsifier

given n, m, €:

we “hide” H(n, €) in larger G(n, m, ¢) with n nodes and m edges

— e-spectral sparsifier of G(n, m, €) must find constant fraction of H(n, ¢)

38

Proving a Lower Bound

39

Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(ne?) entries

39

Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(ne?) entries

original graph:

SO = =
o = O O
—_—_ = O
—_ o O

39

Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(ne?) entries

original graph:

hidden graph:

000000 1 000
0001 000000
0000000000

OOOOOOOOOO

O O = =

0000000000
0000000000
000000 1 000

OOOOOOOOOO

o = O O

—_— = = O
—_—0 O =

0000000000
000000001 0
00000000 1 0

00000 l 0000

0010000000
0000000000
0000000000

0000 1 00000

39

Proving a Lower Bound
forgetting about graphs:

40

Proving a Lower Bound
forgetting about graphs:

e {0, 1}

o - O O
—_ = = O

1
0
0
1

OO ==

40

Proving a Lower Bound

forgetting about graphs:

OO ==

0000001 000
0001000000
= ORN ,blockwise
0000000000

(0000000000

o - O O
—_ = = O

0000000000
0000000000
000000 1 000

0000000000

1
0
nxn
Ol e o
1
0000000000 0010000000
0000000010 0000000000 € {01} Nnx Nn
0000000010 0000000000 ’
0000010000 00001 00000

40

Proving a Lower Bound

forgetting about graphs:

OO ==

0000001 000
0001000000
= ORN ,blockwise
0000000000

(0000000000

0 0 1
01 0
c 0 1 nxn

01 1
0000000000 0000000000 0010000000
0000000000 0000000010 0000000000 NixNn

€ {0, 1}
0000001000 0000000010 0000000000
0000000000 0000010000 00001 00000
task:

output constant fraction of 1-bits of A, each described by ORy-function

40

Proving a Lower Bound

forgetting about graphs:

OO ==

0000001 000
0001000000
= ORN ,blockwise
0000000000

(0000000000

o - O O
—_ = = O

0000000000
0000000000
000000 1 000

0000000000

1
0
0
1

0000000000
00000000 1 0
00000000 1 0

00000 1 0000

task:
output constant fraction of 1-bits of A, each described by ORy-function
= relational problem composed with ORy

e {0, 1}

0010000000
0000000000
c {0’ 1 }Nn XNn

0000000000

00001 00000

40

Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORy-function ?

41

Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORy-function ?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORy-function, is

Q(LVN).

41

Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORy-function ?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORy-function, is

Q(LVN).

for L = Q(n) and N = m/(né?):
Corollary

The quantum query complexity of explicity outputting an e-spectral
sparsifier of a graph with n nodes and m edges is

Q(y/mn/e).

41

this work:
Qo

2]
© applications: quantum speedup for

max cut, min cut, min sz-cut, sparsest cut, ...

Laplacian solving, approximating resistances and random walk
properties, spectral clustering, ...

42

Quantum Speedups by Quantum Sparsification

43

Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification

43

Quantum Speedups by Quantum Sparsification
graph quantity P,
approximately preserved under sparsification
+

classical O(m) algorithm for P

43

Quantum Speedups by Quantum Sparsification
graph quantity P,
approximately preserved under sparsification
+
classical O(m) algorithm for P

0

quantum sparsify G to H in O(y/mn/¢)
+ classical algorithm on H in O(n/é?)

43

Quantum Speedups by Quantum Sparsification
graph quantity P,
approximately preserved under sparsification
+
classical O(m) algorithm for P

0

quantum sparsify G to H in O(y/mn/¢)
+ classical algorithm on H in O(n/é?)

approximate 5(\/mn/6) quantum algorithm for P

43

Cut Approximation

MIN CUT:

find cut (S, 5¢) that minimizes cut value cutg(S)

Cut Approximation

MIN CUT:

find cut (S, 5¢) that minimizes cut value cutg(S)

classically: can find MIN CUT in time O(m) (Karger '00)

Cut Approximation

MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN cUT of G

Y
DO
A VA7

Cut Approximation

MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN cUT of G

quantum sparsify G to H in O(y/mn/e)
+ classical MIN CUT on H in O(n/¢?) (Karger '00)

= O(/mn/€) quantum algorithm for e-MIN CUT

45

Cut Approximation

Classical Quantum (this work)
e-MIN CUT O(m) (Karger00) O(y/mn/e)
€-MIN s-CUT O(m + n/e%) (Peng'16) O(\/mn/e+n/e%)
V10g n-SPARSEST CUT/ O(m + n'*9) B(J 1 ni+9)
-BAL. SEPARATOR (Sherman’09)
.878-MAX CUT O(m) (Arora-Kale'07) O(y/mn)

46

Laplacian Solving

47

Laplacian Solving

general linear system Ax = b

47

Laplacian Solving

general linear system Ax = b

given A and b, with nnz(A) = m,

complexity of approximating x is O(min{mn, n*}) (w < 2.373)

47

Laplacian Solving

Laplacian system Lx = b

48

Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is O(1) [Spielman-Teng '04]

48

Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is O(1) [Spielman-Teng '04]
+

if H sparsifier of G then Lib ~ L:b

48

Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is O(1) [Spielman-Teng '04]
+
if H sparsifier of G then Lib ~ L:b
1
quantum algorithm to sparsify G to H in 5(\/;%/6)

+ solve Lyx = b classically in O(n/é?)

48

Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is O(1) [Spielman-Teng '04]
+
if H sparsifier of G then Lib ~ L:b
1
quantum algorithm to sparsify G to H in 5(\/;%/6)

+ solve Lyx = b classically in O(n/é?)

quantum algorithm for Laplacian solving in O(,/mn/¢)

48

Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,
complexity of approximating x is O(1) [Spielman-Teng '04]
+
if H sparsifier of G then Lib ~ L:b
1
quantum algorithm to sparsify G to H in 5(\/%/6)

+ solve Lyx = b classically in O(n/é?)

quantum algorithm for Laplacian solving in O(,/mn/¢)

(+ quantum reduction for symmetric, diagonally dominant systems)
48

Laplacian Solving and Friends

Classical Quantum (this work)
e-SDD Solving 5(}11) (8ST'04) 5(\/mn/e)
e-Effective Resistance B(m) O(\/mn/e)
m ~
(single) prior: O(y/mn/€*)
-Effective Resistance O(m +n/e* ~
‘ (m +n/) O(/mn/e+n/e)
(all) (Spielman-Srivastava’08)
0 _
O(1)-Cover Time (m) O(y/mn)
(Ding-Lee-Peres’10)
k bottom - O(y/mnje + kn/é
O(m + kn/) (v/mn/e +~ n/e”)
eigenvalues prior, k = 1: O(n? /)

Spectral k-means

clustering

O(m + npoly(k))

O(/mi + npoly(k))

49

50

summary:

@ quantum algorithm for spectral sparsification in time 5(,/mn/e)

50

summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)

@ matching Q(y/mn/¢) lower bound

50

summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)
@ matching Q(y/mn/¢) lower bound

@ speedup for cut approximation, Laplacian solving, ...

50

summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)
@ matching Q(y/mn/¢) lower bound

@ speedup for cut approximation, Laplacian solving, ...

open questions:

50

summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)
@ matching Q(y/mn/¢) lower bound

@ speedup for cut approximation, Laplacian solving, ...

open questions:

@ matching lower bounds for applications?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

50

summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)
@ matching Q(y/mn/¢) lower bound

@ speedup for cut approximation, Laplacian solving, ...

open questions:

@ matching lower bounds for applications?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ our 5(\/mn/6) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

50

summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)
@ matching Q(y/mn/¢) lower bound

@ speedup for cut approximation, Laplacian solving, ...

open questions:

@ matching lower bounds for applications?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ our 5(\/mn/6) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50

	Graph Sparsification
	Cut and spectral sparsification

