
Quantum Speedup for Graph Sparsification,
Cut Approximation and Laplacian Solving

Simon Apers1 Ronald de Wolf 2

1Inria, France and CWI, the Netherlands
2QuSoft, CWI and University of Amsterdam, the Netherlands

Simons Institute, April 2020

(arXiv:1911.07306)



Graphs

1



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .

describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store

less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process

example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



graphs are nice

all over computer science, discrete math, biology, . . .
describe relations, networks, groups, . . .

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?

2



Graph Sparsification

3



undirected, weighted graph G = (V,E,w)
n nodes and m edges, m ≤

(n
2

)

4



undirected, weighted graph G = (V,E,w)
n nodes and m edges, m ≤

(n
2

)

adjacency-list access
query (i, k) returns k-th neighbor j of node i

4



Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities

5



Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, . . .

→ typically captured by graph Laplacian LG

LG = D− A

with

(D)ii =
∑

j

w(i, j) and (A)ij = w(i, j)

6



Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, . . .

→ typically captured by graph Laplacian LG

LG = D− A

with

(D)ii =
∑

j

w(i, j) and (A)ij = w(i, j)

6



Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, . . .

→ typically captured by graph Laplacian LG

LG = D− A

with

(D)ii =
∑

j

w(i, j) and (A)ij = w(i, j)

6



Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, . . .

→ typically captured by graph Laplacian LG

LG = D− A

with

(D)ii =
∑

j

w(i, j) and (A)ij = w(i, j)

6



Graph Laplacian

equivalently,

LG =
∑

(i,j)∈E

w(i, j) L(i,j)

with

L(i,j) = (ei − ej) (ei − ej)
T =


0 . . . 0
...
[

1 −1
−1 1

]
(i,j)

...

0 . . . 0



7



Graph Laplacian

equivalently,

LG =
∑

(i,j)∈E

w(i, j) L(i,j)

with

L(i,j) = (ei − ej) (ei − ej)
T =


0 . . . 0
...
[

1 −1
−1 1

]
(i,j)

...

0 . . . 0



7



Graph Laplacian

equivalently,

LG =
∑

(i,j)∈E

w(i, j) L(i,j)

with

L(i,j) = (ei − ej) (ei − ej)
T =


0 . . . 0
...
[

1 −1
−1 1

]
(i,j)

...

0 . . . 0



7



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx

=
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x

=
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS

=
∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2

=
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j)

= cutG(S)

8



Graph Laplacian

mainly interested in quadratic forms in LG

xTLGx =
∑
(i,j)

w(i, j) xTL(i,j)x =
∑
(i,j)

w(i, j) (x(i)− x(j))2

e.g., if xS indicator vector on S ⊆ V:

xT
S LGxS =

∑
(i,j)

w(i, j)(xS(i)− xS(j))2 =
∑

i∈S,j∈Sc

w(i, j) = cutG(S)

8



Graph Laplacian

as it turns out,
quadratic forms

xTLGx and xTL+
G x for x ∈ Rn

describe cut values, eigenvalues,
effective resistances, hitting times, . . .

→ interested in preserving quadratic forms!

9



Graph Laplacian

as it turns out,
quadratic forms

xTLGx and xTL+
G x for x ∈ Rn

describe cut values, eigenvalues,
effective resistances, hitting times, . . .

→ interested in preserving quadratic forms!

9



Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ε-spectral sparsifier of G iff

xTLHx = (1± ε) xTLGx for all x ∈ Rn

equivalently:
xTL+

H x = (1± O(ε)) xTL+
G x

equivalently:
(1− ε) LG � LH � (1 + ε) LG

10



Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ε-spectral sparsifier of G iff

xTLHx = (1± ε) xTLGx for all x ∈ Rn

equivalently:
xTL+

H x = (1± O(ε)) xTL+
G x

equivalently:
(1− ε) LG � LH � (1 + ε) LG

10



Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ε-spectral sparsifier of G

iff

xTLHx = (1± ε) xTLGx for all x ∈ Rn

equivalently:
xTL+

H x = (1± O(ε)) xTL+
G x

equivalently:
(1− ε) LG � LH � (1 + ε) LG

10



Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ε-spectral sparsifier of G iff

xTLHx = (1± ε) xTLGx for all x ∈ Rn

equivalently:
xTL+

H x = (1± O(ε)) xTL+
G x

equivalently:
(1− ε) LG � LH � (1 + ε) LG

10



Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ε-spectral sparsifier of G iff

xTLHx = (1± ε) xTLGx for all x ∈ Rn

equivalently:
xTL+

H x = (1± O(ε)) xTL+
G x

equivalently:
(1− ε) LG � LH � (1 + ε) LG

10



Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ε-spectral sparsifier of G iff

xTLHx = (1± ε) xTLGx for all x ∈ Rn

equivalently:
xTL+

H x = (1± O(ε)) xTL+
G x

equivalently:
(1− ε) LG � LH � (1 + ε) LG

10



Spectral Sparsification

how sparse can we go ?

Karger ’94, Benczúr-Karger ’96,
Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem
every graph has ε-spectral sparsifier H with a number of edges

Õ(n/ε2)

H can be found in time Õ(m)

(only relevant when ε�
√

n/m)

11



Spectral Sparsification

how sparse can we go ?

Karger ’94, Benczúr-Karger ’96,
Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem

every graph has ε-spectral sparsifier H with a number of edges

Õ(n/ε2)

H can be found in time Õ(m)

(only relevant when ε�
√

n/m)

11



Spectral Sparsification

how sparse can we go ?

Karger ’94, Benczúr-Karger ’96,
Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem
every graph has ε-spectral sparsifier H with a number of edges

Õ(n/ε2)

H can be found in time Õ(m)

(only relevant when ε�
√

n/m)

11



Spectral Sparsification

how sparse can we go ?

Karger ’94, Benczúr-Karger ’96,
Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem
every graph has ε-spectral sparsifier H with a number of edges

Õ(n/ε2)

H can be found in time Õ(m)

(only relevant when ε�
√

n/m)

11



Spectral Sparsification

how sparse can we go ?

Karger ’94, Benczúr-Karger ’96,
Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem
every graph has ε-spectral sparsifier H with a number of edges

Õ(n/ε2)

H can be found in time Õ(m)

(only relevant when ε�
√

n/m)

11



Applications

important building stone of many

Õ(m) cut approximation algorithms

max cut (Arora-Kale ’07)

min cut (Karger ’00)

min st-cut (Peng ’16)

sparsest cut (Sherman ’09)

. . .

12



Applications

important building stone of many

Õ(m) cut approximation algorithms

max cut (Arora-Kale ’07)

min cut (Karger ’00)

min st-cut (Peng ’16)

sparsest cut (Sherman ’09)

. . .

12



Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng ’04)
Let G be a graph with m edges. The Laplacian system LGx = b can be
approximately solved in time Õ(m).

13



Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng ’04)
Let G be a graph with m edges. The Laplacian system LGx = b can be
approximately solved in time Õ(m).

13



Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng ’04)
Let G be a graph with m edges. The Laplacian system LGx = b can be
approximately solved in time Õ(m).

= Gödel prize 2015

13



Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng ’04)
Let G be a graph with m edges. The Laplacian system LGx = b can be
approximately solved in time Õ(m).

Õ(m) approximation algorithms for

electrical flows and max flows
spectral clustering
random walk properties
learning from data on graphs
. . .

13



Our Contribution

classically, Õ(m) runtime is optimal for most graph algorithms

can we do better using a quantum computer?

(disclaimer: not with this one we won’t)

14



Our Contribution

classically, Õ(m) runtime is optimal for most graph algorithms

can we do better using a quantum computer?

(disclaimer: not with this one we won’t)

14



Our Contribution

classically, Õ(m) runtime is optimal for most graph algorithms

can we do better using a quantum computer?

(disclaimer: not with this one we won’t)

14



Our Contribution

this work:

1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

15



Our Contribution

this work:
1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

15



Our Contribution

this work:
1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

15



Our Contribution

this work:
1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

15



this work:
1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

16



Classical Sparsification Algorithm

Sparsification by edge sampling:
1 associate probabilities {pe} to every edge
2 keep every edge e with probability pe, rescale its weight by 1/pe

ensures that

E(wH
e ) = wG

e

and hence

E(LH) = E
(∑

weLe

)
= LG

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high pe to edges with high effective resistance!

17



Classical Sparsification Algorithm

Sparsification by edge sampling:
1 associate probabilities {pe} to every edge
2 keep every edge e with probability pe, rescale its weight by 1/pe

ensures that

E(wH
e ) = wG

e

and hence

E(LH) = E
(∑

weLe

)
= LG

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high pe to edges with high effective resistance!

17



Classical Sparsification Algorithm

Sparsification by edge sampling:
1 associate probabilities {pe} to every edge
2 keep every edge e with probability pe, rescale its weight by 1/pe

ensures that

E(wH
e ) = wG

e

and hence

E(LH) = E
(∑

weLe

)
= LG

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high pe to edges with high effective resistance!

17



Classical Sparsification Algorithm

Sparsification by edge sampling:
1 associate probabilities {pe} to every edge
2 keep every edge e with probability pe, rescale its weight by 1/pe

ensures that

E(wH
e ) = wG

e

and hence

E(LH) = E
(∑

weLe

)
= LG

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high pe to edges with high effective resistance!

17



Classical Sparsification Algorithm

Sparsification by edge sampling:
1 associate probabilities {pe} to every edge
2 keep every edge e with probability pe, rescale its weight by 1/pe

ensures that

E(wH
e ) = wG

e

and hence

E(LH) = E
(∑

weLe

)
= LG

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high pe to edges with high effective resistance!

17



Classical Sparsification Algorithm

Sparsification by edge sampling:
1 associate probabilities {pe} to every edge
2 keep every edge e with probability pe, rescale its weight by 1/pe

ensures that

E(wH
e ) = wG

e

and hence

E(LH) = E
(∑

weLe

)
= LG

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high pe to edges with high effective resistance!

17



Classical Sparsification Algorithm

effective resistance R(i,j)

18



Classical Sparsification Algorithm

effective resistance R(i,j)

= resistance between i, j
after replacing all edges with resistors

(Ohm’s law)
= voltage difference required between i, j

when sending unit current from i to j

→ small if many short and parallel paths from i to j !

18



Classical Sparsification Algorithm

effective resistance R(i,j)

= resistance between i, j
after replacing all edges with resistors

(Ohm’s law)
= voltage difference required between i, j

when sending unit current from i to j

→ small if many short and parallel paths from i to j !

18



Classical Sparsification Algorithm

effective resistance R(i,j)

= resistance between i, j
after replacing all edges with resistors

(Ohm’s law)
= voltage difference required between i, j

when sending unit current from i to j

→ small if many short and parallel paths from i to j !

18



Classical Sparsification Algorithm

effective resistance R(i,j)

red edge: Re = 1

black edges: Re ∈ O(1/n)

18



? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with Õ(n) edges
all distances stretched by factor ≤ log n: for all i, j

dG(i, j) ≤ dF(i, j) ≤ log(n) dG(i, j)

G F

19



? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with Õ(n) edges
all distances stretched by factor ≤ log n: for all i, j

dG(i, j) ≤ dF(i, j) ≤ log(n) dG(i, j)

G F

19



? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with Õ(n) edges

all distances stretched by factor ≤ log n: for all i, j

dG(i, j) ≤ dF(i, j) ≤ log(n) dG(i, j)

G F

19



? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with Õ(n) edges
all distances stretched by factor ≤ log n: for all i, j

dG(i, j) ≤ dF(i, j) ≤ log(n) dG(i, j)

G F

19



? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with Õ(n) edges
all distances stretched by factor ≤ log n: for all i, j

dG(i, j) ≤ dF(i, j) ≤ log(n) dG(i, j)

G F

19



? how to identify high-resistance edges ?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with Õ(n) edges
all distances stretched by factor ≤ log n: for all i, j

dG(i, j) ≤ dF(i, j) ≤ log(n) dG(i, j)

G F

20



[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges!

proof idea for Re = 1:

if Re = 1, there are no alternative paths between endpoints
hence, e must be present in spanner

21



[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges!

proof idea for Re = 1:

if Re = 1, there are no alternative paths between endpoints

hence, e must be present in spanner

21



[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges!

proof idea for Re = 1:

if Re = 1, there are no alternative paths between endpoints
hence, e must be present in spanner

21



Classical Sparsification Algorithm

Iterative sparsification:
1 construct Õ(1/ε2) spanners and keep these edges
2 keep any remaining edge with probability 1/2, and double its

weight

(i.e., we set pe = 1 for spanner edges and pe = 1/2 for other edges)

Theorem (Spielman-Srivastava ’08, Koutis-Xu ’14)

W.h.p. output is ε-spectral sparsifier with m/2 + Õ(n/ε2) edges

→ repeat O(log n) times: ε-spectral sparsifier with Õ(n/ε2) edges

22



Classical Sparsification Algorithm

Iterative sparsification:
1 construct Õ(1/ε2) spanners and keep these edges
2 keep any remaining edge with probability 1/2, and double its

weight

(i.e., we set pe = 1 for spanner edges and pe = 1/2 for other edges)

Theorem (Spielman-Srivastava ’08, Koutis-Xu ’14)

W.h.p. output is ε-spectral sparsifier with m/2 + Õ(n/ε2) edges

→ repeat O(log n) times: ε-spectral sparsifier with Õ(n/ε2) edges

22



Classical Sparsification Algorithm

Iterative sparsification:
1 construct Õ(1/ε2) spanners and keep these edges
2 keep any remaining edge with probability 1/2, and double its

weight

(i.e., we set pe = 1 for spanner edges and pe = 1/2 for other edges)

Theorem (Spielman-Srivastava ’08, Koutis-Xu ’14)

W.h.p. output is ε-spectral sparsifier with m/2 + Õ(n/ε2) edges

→ repeat O(log n) times: ε-spectral sparsifier with Õ(n/ε2) edges

22



Classical Sparsification Algorithm

Iterative sparsification:
1 construct Õ(1/ε2) spanners and keep these edges
2 keep any remaining edge with probability 1/2, and double its

weight

(i.e., we set pe = 1 for spanner edges and pe = 1/2 for other edges)

Theorem (Spielman-Srivastava ’08, Koutis-Xu ’14)

W.h.p. output is ε-spectral sparsifier with m/2 + Õ(n/ε2) edges

→ repeat O(log n) times: ε-spectral sparsifier with Õ(n/ε2) edges

22



Quantum Sparsification Algorithm

= quantum spanner algorithm

+ k-independent oracle

+ a magic trick

23



Quantum Sparsification Algorithm

= quantum spanner algorithm

+ k-independent oracle

+ a magic trick

23



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:

1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)

2 iterate over every edge (i, j) ∈ E\EF:
if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:

1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)

2 until no more edges are found, do:
Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries

24



Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

Õ(
√

mn)

greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 iterate over every edge (i, j) ∈ E\EF:

if δF(i, j) > log n, add (i, j) to F

quantum greedy spanner algorithm:
1 set F = (V,EF = ∅)
2 until no more edges are found, do:

Grover search for edge (i, j) such that δF(i, j) > log n. add (i, j) to F

→ can prove: Õ(n) edges are found using Õ(
√

mn) queries
24



Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

Õ(
√

mn)

= (roughly)

[Thorup-Zwick ’01]

classical construction of a spanner by growing
small shortest-path trees (SPTs)

+

[Dürr-Heiligman-Høyer-Mhalla ’04]

quantum speedup for constructing SPTs

25



Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

Õ(
√

mn)

= (roughly)

[Thorup-Zwick ’01]

classical construction of a spanner by growing
small shortest-path trees (SPTs)

+

[Dürr-Heiligman-Høyer-Mhalla ’04]

quantum speedup for constructing SPTs

25



Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

Õ(
√

mn)

= (roughly)

[Thorup-Zwick ’01]

classical construction of a spanner by growing
small shortest-path trees (SPTs)

+

[Dürr-Heiligman-Høyer-Mhalla ’04]

quantum speedup for constructing SPTs

25



Quantum Sparsification Algorithm

Iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 keep any remaining edge with probability 1/2, and double its

weight

→ after 1 iteration: “intermediate” graph with ≈ m/2 edges

? how to keep track in time o(m) ?

26



Quantum Sparsification Algorithm

Iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 keep any remaining edge with probability 1/2, and double its

weight

→ after 1 iteration: “intermediate” graph with ≈ m/2 edges

? how to keep track in time o(m) ?

26



Quantum Sparsification Algorithm

Iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 keep any remaining edge with probability 1/2, and double its

weight

→ after 1 iteration: “intermediate” graph with ≈ m/2 edges

? how to keep track in time o(m) ?

26



Quantum Sparsification Algorithm

Iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 keep any remaining edge with probability 1/2, and double its

weight

→ after 1 iteration: “intermediate” graph with ≈ m/2 edges

? how to keep track in time o(m) ?

26



Query Access to Random String

­ maintain (offline) random string x ∈ {0, 1}(
n
2)

1 0 0 1 1 0 1 1 1 0 1 0 0

edge (i, j) discarded edge (i′, j′) kept

(oblivious to the graph!)

query (i, k) −→ (j, x(i, j))

27



Query Access to Random String

­ maintain (offline) random string x ∈ {0, 1}(
n
2)

1 0 0 1 1 0 1 1 1 0 1 0 0

edge (i, j) discarded edge (i′, j′) kept
(oblivious to the graph!)

query (i, k) −→ (j, x(i, j))

27



Query Access to Random String

­ maintain (offline) random string x ∈ {0, 1}(
n
2)

1 0 0 1 1 0 1 1 1 0 1 0 0

edge (i, j) discarded edge (i′, j′) kept
(oblivious to the graph!)

query (i, k) −→ (j, x(i, j))

27



Query Access to Random String

­ maintain (offline) random string x ∈ {0, 1}(
n
2)

1 0 0 1 1 0 1 1 1 0 1 0 0

edge (i, j) discarded edge (i′, j′) kept
(oblivious to the graph!)

query (i, k) −→ (j, x(i, j))

27



Query Access to Random String

problem:
time Ω(n2) to generate random x ∈ {0, 1}(

n
2)

classical solution: “lazy sampling” (generate bits on demand)

quantum this is not possible: can address all bits in superposition

28



Query Access to Random String

problem:
time Ω(n2) to generate random x ∈ {0, 1}(

n
2)

classical solution: “lazy sampling” (generate bits on demand)

quantum this is not possible: can address all bits in superposition

28



Query Access to Random String

problem:
time Ω(n2) to generate random x ∈ {0, 1}(

n
2)

classical solution: “lazy sampling” (generate bits on demand)

quantum this is not possible: can address all bits in superposition

28



Rid of Random String

luckily, we can outsmart this quantum demon:

Fact
k/2-query quantum algorithm cannot distinguish uniformly random
string from k-wise independent string *

= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf ’98]

* k-wise independent string x ∈ {0, 1}(
n
2)

behaves uniformly random on every subset of k bits

29



Rid of Random String

luckily, we can outsmart this quantum demon:

Fact
k/2-query quantum algorithm cannot distinguish uniformly random
string from k-wise independent string *

= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf ’98]

* k-wise independent string x ∈ {0, 1}(
n
2)

behaves uniformly random on every subset of k bits

29



Rid of Random String

luckily, we can outsmart this quantum demon:

Fact
k/2-query quantum algorithm cannot distinguish uniformly random
string from k-wise independent string *

= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf ’98]

* k-wise independent string x ∈ {0, 1}(
n
2)

behaves uniformly random on every subset of k bits

29



Rid of Random String

aim for quantum algorithm making ∼
√

mn queries,
so suffices to use k-wise independent

(n
2

)
-bit string with k ∼

√
mn

? can we efficiently query such a string ?
(without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time Õ(k) a k-independent oracle that
simulates queries to k-wise independent string in time Õ(1) per query.

Corollary
Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time Õ(k) without random string.

30



Rid of Random String

aim for quantum algorithm making ∼
√

mn queries,
so suffices to use k-wise independent

(n
2

)
-bit string with k ∼

√
mn

? can we efficiently query such a string ?
(without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time Õ(k) a k-independent oracle that
simulates queries to k-wise independent string in time Õ(1) per query.

Corollary
Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time Õ(k) without random string.

30



Rid of Random String

aim for quantum algorithm making ∼
√

mn queries,
so suffices to use k-wise independent

(n
2

)
-bit string with k ∼

√
mn

? can we efficiently query such a string ?
(without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time Õ(k) a k-independent oracle that
simulates queries to k-wise independent string in time Õ(1) per query.

Corollary
Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time Õ(k) without random string.

30



Rid of Random String

aim for quantum algorithm making ∼
√

mn queries,
so suffices to use k-wise independent

(n
2

)
-bit string with k ∼

√
mn

? can we efficiently query such a string ?
(without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time Õ(k) a k-independent oracle that
simulates queries to k-wise independent string in time Õ(1) per query.

Corollary
Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time Õ(k) without random string.

30



Rid of Random String

aim for quantum algorithm making ∼
√

mn queries,
so suffices to use k-wise independent

(n
2

)
-bit string with k ∼

√
mn

? can we efficiently query such a string ?
(without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time Õ(k) a k-independent oracle that
simulates queries to k-wise independent string in time Õ(1) per query.

Corollary
Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time Õ(k) without random string.

30



Quantum Sparsification Algorithm

Quantum iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 construct k-independent oracle that marks remaining edges with

probability 1/2, and double weights

→ per iteration: complexity Õ(
√

mn/ε2)

Theorem
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε2)

31



Quantum Sparsification Algorithm

Quantum iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 construct k-independent oracle that marks remaining edges with

probability 1/2, and double weights

→ per iteration: complexity Õ(
√

mn/ε2)

Theorem
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε2)

31



Quantum Sparsification Algorithm

Quantum iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 construct k-independent oracle that marks remaining edges with

probability 1/2, and double weights

→ per iteration: complexity Õ(
√

mn/ε2)

Theorem
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε2)

31



Quantum Sparsification Algorithm

Quantum iterative sparsification:
1 use quantum algorithm to construct Õ(1/ε2) spanners, keep

these edges
2 construct k-independent oracle that marks remaining edges with

probability 1/2, and double weights

→ per iteration: complexity Õ(
√

mn/ε2)

Theorem
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε2)

31



A Magic Trick

32



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving
= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)

33



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving
= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)

33



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving

= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)

33



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving
= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)

33



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving
= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)

33



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving
= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)

33



A Magic Trick
to improve ε-dependency:

1 create rough ε-spectral sparsifier H for ε = 1/10

→ Õ(
√

mn) using our quantum algorithm

2 estimate effective resistances for H

→ Õ(n) using classical Laplacian solving
= approximation of effective resistances of G !

3 sample Õ(n/ε2) edges from G using these estimates

→ in time Õ(
√

mn/ε2) using Grover search

Theorem (our main result)
There is a quantum algorithm that constructs an ε-spectral sparsifier
with Õ(n/ε2) edges in time

Õ(
√

mn/ε)

* assuming ε ≥
√

n/m, it holds that Õ(
√

mn/ε) ∈ Õ(m)
33



this work:
1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

34



Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes

Ω(
√

Mk) quantum queries

“hence”

finding Õ(n/ε2) edges of sparsifier among m edges takes time

Ω̃(
√

mn/ε)

35



Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes

Ω(
√

Mk) quantum queries

“hence”

finding Õ(n/ε2) edges of sparsifier among m edges takes time

Ω̃(
√

mn/ε)

35



Unsparsifiable Graph

random bipartite graph on 1/ε2 nodes

36



Unsparsifiable Graph

random bipartite graph on 1/ε2 nodes

36



Unsparsifiable Graph
ε2n copies

= random graph H(n, ε) with n nodes and O(n/ε2) edges

Theorem (Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang ’16)

Any ε-spectral sparsifier of H(n, ε) must contain a constant fraction of
its edges.

37



Unsparsifiable Graph
ε2n copies

= random graph H(n, ε) with n nodes and O(n/ε2) edges

Theorem (Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang ’16)

Any ε-spectral sparsifier of H(n, ε) must contain a constant fraction of
its edges.

37



Hiding a Sparsifier

given n, m, ε:

we “hide” H(n, ε) in larger G(n,m, ε) with n nodes and m edges

→ ε-spectral sparsifier of G(n,m, ε) must find constant fraction of H(n, ε)

38



Hiding a Sparsifier

given n, m, ε:

we “hide” H(n, ε) in larger G(n,m, ε) with n nodes and m edges

→ ε-spectral sparsifier of G(n,m, ε) must find constant fraction of H(n, ε)

38



Hiding a Sparsifier

given n, m, ε:

we “hide” H(n, ε) in larger G(n,m, ε) with n nodes and m edges

→ ε-spectral sparsifier of G(n,m, ε) must find constant fraction of H(n, ε)

38



Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(nε2) entries

original graph:

=


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1


hidden graph:

=


0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000



39



Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(nε2) entries

original graph:

=


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1


hidden graph:

=


0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000



39



Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(nε2) entries

original graph:

=


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1



hidden graph:

=


0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000



39



Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(nε2) entries

original graph:

=


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1


hidden graph:

=


0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000


39



Proving a Lower Bound

forgetting about graphs:

A =


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

 ∈ {0, 1}n×n

= ORN,blockwise




0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000

 ∈ {0, 1}Nn×Nn



task:
output constant fraction of 1-bits of A, each described by ORN-function

= relational problem composed with ORN

40



Proving a Lower Bound

forgetting about graphs:

A =


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

 ∈ {0, 1}n×n

= ORN,blockwise




0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000

 ∈ {0, 1}Nn×Nn



task:
output constant fraction of 1-bits of A, each described by ORN-function

= relational problem composed with ORN

40



Proving a Lower Bound

forgetting about graphs:

A =


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

 ∈ {0, 1}n×n

= ORN,blockwise




0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000

 ∈ {0, 1}Nn×Nn



task:
output constant fraction of 1-bits of A, each described by ORN-function

= relational problem composed with ORN

40



Proving a Lower Bound

forgetting about graphs:

A =


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

 ∈ {0, 1}n×n

= ORN,blockwise




0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000

 ∈ {0, 1}Nn×Nn



task:
output constant fraction of 1-bits of A, each described by ORN-function

= relational problem composed with ORN

40



Proving a Lower Bound

forgetting about graphs:

A =


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

 ∈ {0, 1}n×n

= ORN,blockwise




0000001000 0000000000 0000000000 0010000000

0001000000 0000000000 0000000010 0000000000

0000000000 0000001000 0000000010 0000000000

0000000000 0000000000 0000010000 0000100000

 ∈ {0, 1}Nn×Nn



task:
output constant fraction of 1-bits of A, each described by ORN-function

= relational problem composed with ORN

40



Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORN-function ?

Theorem (proof by A. Belov and T. Lee, to be published)
The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORN-function, is

Ω(L
√

N).

for L = Ω̃(n) and N = m/(nε2):

Corollary
The quantum query complexity of explicity outputting an ε-spectral
sparsifier of a graph with n nodes and m edges is

Ω̃(
√

mn/ε).

41



Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORN-function ?

Theorem (proof by A. Belov and T. Lee, to be published)
The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORN-function, is

Ω(L
√

N).

for L = Ω̃(n) and N = m/(nε2):

Corollary
The quantum query complexity of explicity outputting an ε-spectral
sparsifier of a graph with n nodes and m edges is

Ω̃(
√

mn/ε).

41



Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORN-function ?

Theorem (proof by A. Belov and T. Lee, to be published)
The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORN-function, is

Ω(L
√

N).

for L = Ω̃(n) and N = m/(nε2):

Corollary
The quantum query complexity of explicity outputting an ε-spectral
sparsifier of a graph with n nodes and m edges is

Ω̃(
√

mn/ε).

41



this work:
1 quantum algorithm to find ε-spectral sparsifier H in time

Õ(
√

mn/ε)

2 matching Ω̃(
√

mn/ε) lower bound

3 applications: quantum speedup for

I max cut, min cut, min st-cut, sparsest cut, . . .

I Laplacian solving, approximating resistances and random walk
properties, spectral clustering, . . .

42



Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification

+

classical Õ(m) algorithm for P

↓

quantum sparsify G to H in Õ(
√

mn/ε)

+ classical algorithm on H in Õ(n/ε2)

=

approximate Õ(
√

mn/ε) quantum algorithm for P

43



Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification

+

classical Õ(m) algorithm for P

↓

quantum sparsify G to H in Õ(
√

mn/ε)

+ classical algorithm on H in Õ(n/ε2)

=

approximate Õ(
√

mn/ε) quantum algorithm for P

43



Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification

+

classical Õ(m) algorithm for P

↓

quantum sparsify G to H in Õ(
√

mn/ε)

+ classical algorithm on H in Õ(n/ε2)

=

approximate Õ(
√

mn/ε) quantum algorithm for P

43



Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification

+

classical Õ(m) algorithm for P

↓

quantum sparsify G to H in Õ(
√

mn/ε)

+ classical algorithm on H in Õ(n/ε2)

=

approximate Õ(
√

mn/ε) quantum algorithm for P

43



Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification

+

classical Õ(m) algorithm for P

↓

quantum sparsify G to H in Õ(
√

mn/ε)

+ classical algorithm on H in Õ(n/ε2)

=

approximate Õ(
√

mn/ε) quantum algorithm for P

43



Cut Approximation

MIN CUT:

find cut (S, Sc) that minimizes cut value cutG(S)

classically: can find MIN CUT in time Õ(m) (Karger ’00)

44



Cut Approximation

MIN CUT:

find cut (S, Sc) that minimizes cut value cutG(S)

classically: can find MIN CUT in time Õ(m) (Karger ’00)

44



Cut Approximation

MIN CUT of ε-spectral sparsifier H
gives ε-approximation of MIN CUT of G

quantum sparsify G to H in Õ(
√

mn/ε)
+ classical MIN CUT on H in Õ(n/ε2) (Karger ’00)

= Õ(
√

mn/ε) quantum algorithm for ε-MIN CUT

45



Cut Approximation

MIN CUT of ε-spectral sparsifier H
gives ε-approximation of MIN CUT of G

quantum sparsify G to H in Õ(
√

mn/ε)
+ classical MIN CUT on H in Õ(n/ε2) (Karger ’00)

= Õ(
√

mn/ε) quantum algorithm for ε-MIN CUT

45



Cut Approximation

Classical Quantum (this work)

ε-MIN CUT Õ(m) (Karger’00) Õ(
√

mn/ε)

ε-MIN st-CUT Õ(m + n/ε5) (Peng’16) Õ(
√

mn/ε+ n/ε5)
√

log n-SPARSEST CUT/

-BAL. SEPARATOR

Õ(m + n1+δ)

(Sherman’09)
Õ(
√

mn + n1+δ)

.878-MAX CUT Õ(m) (Arora-Kale’07) Õ(
√

mn)

46



Laplacian Solving

general linear system Ax = b

given A and b, with nnz(A) = m,

complexity of approximating x is Õ(min{mn, nω}) (ω < 2.373)

47



Laplacian Solving

general linear system Ax = b

given A and b, with nnz(A) = m,

complexity of approximating x is Õ(min{mn, nω}) (ω < 2.373)

47



Laplacian Solving

general linear system Ax = b

given A and b, with nnz(A) = m,

complexity of approximating x is Õ(min{mn, nω}) (ω < 2.373)

47



Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is Õ(m) [Spielman-Teng ’04]

+

if H sparsifier of G then L+
H b ≈ L+

G b

↓

quantum algorithm to sparsify G to H in Õ(
√

mn/ε)

+ solve LHx = b classically in Õ(n/ε2)

=

quantum algorithm for Laplacian solving in Õ(
√

mn/ε)

(+ quantum reduction for symmetric, diagonally dominant systems)

48



Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is Õ(m) [Spielman-Teng ’04]

+

if H sparsifier of G then L+
H b ≈ L+

G b

↓

quantum algorithm to sparsify G to H in Õ(
√

mn/ε)

+ solve LHx = b classically in Õ(n/ε2)

=

quantum algorithm for Laplacian solving in Õ(
√

mn/ε)

(+ quantum reduction for symmetric, diagonally dominant systems)

48



Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is Õ(m) [Spielman-Teng ’04]

+

if H sparsifier of G then L+
H b ≈ L+

G b

↓

quantum algorithm to sparsify G to H in Õ(
√

mn/ε)

+ solve LHx = b classically in Õ(n/ε2)

=

quantum algorithm for Laplacian solving in Õ(
√

mn/ε)

(+ quantum reduction for symmetric, diagonally dominant systems)

48



Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is Õ(m) [Spielman-Teng ’04]

+

if H sparsifier of G then L+
H b ≈ L+

G b

↓

quantum algorithm to sparsify G to H in Õ(
√

mn/ε)

+ solve LHx = b classically in Õ(n/ε2)

=

quantum algorithm for Laplacian solving in Õ(
√

mn/ε)

(+ quantum reduction for symmetric, diagonally dominant systems)

48



Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is Õ(m) [Spielman-Teng ’04]

+

if H sparsifier of G then L+
H b ≈ L+

G b

↓

quantum algorithm to sparsify G to H in Õ(
√

mn/ε)

+ solve LHx = b classically in Õ(n/ε2)

=

quantum algorithm for Laplacian solving in Õ(
√

mn/ε)

(+ quantum reduction for symmetric, diagonally dominant systems)

48



Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,

complexity of approximating x is Õ(m) [Spielman-Teng ’04]

+

if H sparsifier of G then L+
H b ≈ L+

G b

↓

quantum algorithm to sparsify G to H in Õ(
√

mn/ε)

+ solve LHx = b classically in Õ(n/ε2)

=

quantum algorithm for Laplacian solving in Õ(
√

mn/ε)

(+ quantum reduction for symmetric, diagonally dominant systems)
48



Laplacian Solving and Friends

Classical Quantum (this work)

ε-SDD Solving Õ(m) (ST’04) Õ(
√

mn/ε)

ε-Effective Resistance

(single)
Õ(m)

Õ(
√

mn/ε)

prior: Õ(
√

mn/ε2)

ε-Effective Resistance

(all)

Õ(m + n/ε4)

(Spielman-Srivastava’08)
Õ(
√

mn/ε+ n/ε4)

O(1)-Cover Time
Õ(m)

(Ding-Lee-Peres’10)
Õ(
√

mn)

k bottom

eigenvalues
Õ(m + kn/ε2)

Õ(
√

mn/ε+ kn/ε2)

prior, k = 1: Õ(n2/ε)

Spectral k-means

clustering
Õ(m + n poly(k)) Õ(

√
mn + n poly(k))

49



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:

matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50



summary:

quantum algorithm for spectral sparsification in time Õ(
√

mn/ε)

matching Ω̃(
√

mn/ε) lower bound

speedup for cut approximation, Laplacian solving, . . .

open questions:
matching lower bounds for applications?
e.g., Ω(

√
mn/ε) for approximate min cut or Laplacian solving?

our Õ(
√

mn/ε) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!

50


	Graph Sparsification
	Cut and spectral sparsification


