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graphs are nice

all over computer science, discrete math, biology, . ..
describe relations, networks, groups, ...

sparse graphs are nicer

less space to store
less time to process
example: expanders are more interesting than complete graphs

can we compress general graphs to sparse graphs ?
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l

adjacency-list access
query (i, k) returns k-th neighbor j of node i
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Graph Laplacian

mainly interested in quadratic forms in L;

xLgx = ZW(iJ) XL jx = Z w(i,j) (x(i) — x(j))>
(i) (i)

e.g., if xg indicator vectoron S C V:

1

xELgxs = Zw(i,j)(xg(i) —xs5())* = Z w(i,j) = cutg(S)

(iJ) i€S,jese
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Graph Laplacian

as it turns out,
quadratic forms

x'Lgx and xTLgx forx e R"
describe cut values, eigenvalues,

effective resistances, hitting times, ...

— interested in preserving quadratic forms!
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Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is e-spectral sparsifier of G iff
X Lgx = (1+e)x"Lgx  forall x € R”

equivalently:
xTLjx = (1£0(e))x"Lix

equivalently:
(1 — E)LG j LH j (1 +6)LG

10
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Spectral Sparsification

how sparse can we go ?

Karger 94, Benczur-Karger '96,
Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem
@ every graph has e-spectral sparsifier H with a number of edges

0(n/é?)

@ H can be found in time O(m)

(only relevant when e > /n/m)
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important building stone of many

O(m) cut approximation algorithms

@ max cut (Arora-Kale '07)

@ min cut (Karger '00)

@ min ss-cut (Peng '16)

@ sparsest cut (Sherman *09)
o ...
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Applications
crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system Lgx = b can be
approximately solved in time O(m).

= Godel prize 2015
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Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system Lgx = b can be
approximately solved in time O(m).

@ electrical flows and max flows
@ spectral clustering

O(m) approximation algorithms for @ random walk properties
@ learning from data on graphs
° ...
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classically, O(m) runtime is optimal for most graph algorithms

can we do better using a quantum computer?

(disclaimer: not with this one we won't)
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Classical Sparsification Algorithm

Sparsification by edge sampling:
@ associate probabilities {p.} to every edge

@ keep every edge e with probability p,, rescale its weight by 1/p,

ensures that

and hence

E(Ly) = E (Z weLe) — Lo

how to ensure concentration?

[Spielman-Srivastava '08]:
give high p, to edges with high effective resistance!

17
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Classical Sparsification Algorithm

effective resistance R;

= resistance between i,
after replacing all edges with resistors

(Ohms faw) voltage difference required between i,

when sending unit current from i to j

— small if many short and parallel paths from i to ;!
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Classical Sparsification Algorithm

effective resistance R;

red edge: R, = 1

black edges: R, € O(1/n)
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[Koutis-Xu *14]:
a graph spanner must contain all high-resistance edges!

proof idea forR, = 1:

e if R, = 1, there are no alternative paths between endpoints
@ hence, e must be present in spanner

21
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Classical Sparsification Algorithm

Iterative sparsification:
@ construct O(1/¢2) spanners and keep these edges

@ keep any remaining edge with probability 1/2, and double its
weight

(i.e., we set p, = 1 for spanner edges and p, = 1/2 for other edges)

Theorem (Spielman-Srivastava ‘08, Koutis-Xu ’14)
W.h.p. outout is e-spectral sparsifier with m/2 + O(n/€?) edges

— repeat O(log n) times: e-spectral sparsifier with O(n/e?) edges

o S

On/e?)
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Quantum Sparsification Algorithm
= quantum spanner algorithm
+ k-independent oracle

+ a magic trick
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Quantum Spanner Algorithm

Theorem (“easy”)
There is a quantum spanner algorithm with query complexity

O(v/mn)

@ greedy spanner algorithm:

@ setF=(V,Er=10)
@ iterate over every edge (i,j) € E\EF:
if 67 (i,j) > logn, add (i,j) to F

@ quantum greedy spanner algorithm:

@ setF=(V,Er=10)
@ until no more edges are found, do:
Grover search for edge (i,j) such that 65 (i,j) > logn. add (i,j) to F

— can prove: O(n) edges are found using O(y/mn) queries
24
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Quantum Spanner Algorithm

Theorem (“less easy”)
There is a quantum spanner algorithm with time complexity

O(v/mn)

= (roughly)

[Thorup-Zwick '01]

classical construction of a spanner by growing
small shortest-path trees (SPTs)

+
[Durr-Heiligman-Hayer-Mhalla '04]

quantum speedup for constructing SPTs

25
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Quantum Sparsification Algorithm

Iterative sparsification:

@ use quantum algorithm to construct O(1/€?) spanners, keep
these edges

@ keep any remaining edge with probability 1/2, and double its
weight

— after 1 iteration: “intermediate” graph with ~ m /2 edges

? how to keep track in time o(m) ?

|:> >
O(n/62)

adj acency list ? output
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Query Access to Random String

¢ maintain (offline) random string x € {0, 1}(3)

[1]ofol1[1[0[1]1[1[0[1]0][0]
/ N\

edge (i,j) discarded edge (7,;) kept
(oblivious to the graph!)

query (i, k) — (j,x(i.j))

.
m mj2 5(”/62)
t t |

adjacency list adj. list + random string output
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Query Access to Random String

problem:
time Q(n?) to generate random x < {0, 1}('21)

@ classical solution: “lazy sampling” (generate bits on demand)

@ quantum this is not possible: can address all bits in superposition
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luckily, we can outsmart this quantum demon:

Fact

k/2-query quantum algorithm cannot distinguish uniformly random
string from k-wise independent string *

= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf 98]

* k-wise independent string x € {0, 1}(3)
behaves uniformly random on every subset of k bits

29
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Rid of Random String

aim for quantum algorithm making ~ /mn queries,
so suffices to use k-wise independent (})-bit string with k ~ /mn

? can we efficiently query such a string ?
(without explicitly generating it!)
— use recent results on “efficient k-independent hash functions”
Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time 5(k) a k-independent oracle that
simulates queries to k-wise independent string in time O(1) per query.

Corollary

Any k-query quantum algorithm that queries a uniformly random string
can be simulated in time O(k) without random string.
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Quantum Sparsification Algorithm

Quantum iterative sparsification:
@ use quantum algorithm to construct 5(1/62) spanners, keep
these edges

@ construct k-independent oracle that marks remaining edges with
probability 1/2, and double weights

— per iteration: complexity O(y/mn/€?)

Theorem

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€?) edges in time

O(/mn/*)
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— O(y/mn) using our quantum algorithm

@ estimate effective resistances for H
— O(n) using classical Laplacian solving
= approximation of effective resistances of G !

@ sample O(n/e?) edges from G using these estimates
— in time O(y/mn/e?) using Grover search

Theorem (our main result)

There is a quantum algorithm that constructs an e-spectral sparsifier
with O(n/€*) edges in time
O(y/mn/e)

* assuming € > \/n/m, it holds that O(y/mn/¢) € O(m) "



this work:

@ quantum algorithm to find e-spectral sparsifier H in time
O(y/mne)

@ matching Q(/mn/¢) lower bound

© applications: quantum speedup for

max cut, min cut, min sz-cut, sparsest cut, ...

Laplacian solving, approximating resistances and random walk
properties, spectral clustering, ...
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Matching Quantum Lower Bound

intuition:

finding kK marked elements among M elements takes

Q(vMk) quantum queries
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Matching Quantum Lower Bound

intuition:

finding kK marked elements among M elements takes

Q(vMk) quantum queries

“hence”

finding O(n/%) edges of sparsifier among m edges takes time

Q(y/mne)
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Unsparsifiable Graph
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Unsparsifiable Graph

random bipartite graph on 1/¢? nodes
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Unsparsifiable Graph
€2n copies
= random graph H(n, €) with n nodes and O(n/e?) edges

(e o (o o)




Unsparsifiable Graph

Theorem (Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang ’16)

€2n copies
= random graph H(n, €) with n nodes and O(n/e?) edges

(o o\ (e o)
p
\8 B\ Z

Any e-spectral sparsifier of H(n,e) must contain a constant fraction of

its edges.
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Hiding a Sparsifier

given n, m, €:

we “hide” H(n, €) in larger G(n, m, ¢) with n nodes and m edges
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Hiding a Sparsifier

given n, m, €:

we “hide” H(n, €) in larger G(n, m, ¢) with n nodes and m edges

— e-spectral sparsifier of G(n, m, €) must find constant fraction of H(n, ¢)
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Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(ne?) entries
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Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(ne?) entries

original graph:

SO = =
o = O O
—_—_ = O
—_ o O
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Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among N = m/(ne?) entries

original graph:

hidden graph:

000000 1 000
0001 000000
0000000000

OOOOOOOOOO

O O = =

0000000000
0000000000
000000 1 000

OOOOOOOOOO

o = O O

—_— = = O
—_—0 O =

0000000000
000000001 0
00000000 1 0

00000 l 0000

0010000000
0000000000
0000000000

0000 1 00000
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Proving a Lower Bound
forgetting about graphs:
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Proving a Lower Bound
forgetting about graphs:

e {0, 1}

o - O O
—_ = = O

1
0
0
1

OO ==
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Proving a Lower Bound

forgetting about graphs:

OO ==

0000001 000
0001000000
= ORN ,blockwise
0000000000

(0000000000

o - O O
—_ = = O

0000000000
0000000000
000000 1 000

0000000000

1
0
nxn
Ol e o
1
0000000000 0010000000
0000000010 0000000000 € {01} Nnx Nn
0000000010 0000000000 ’
0000010000 00001 00000
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Proving a Lower Bound

forgetting about graphs:

OO ==

0000001 000
0001000000
= ORN ,blockwise
0000000000

(0000000000

0 0 1
01 0
c 0 1 nxn

01 1
0000000000 0000000000 0010000000
0000000000 0000000010 0000000000 NixNn

€ {0, 1}
0000001000 0000000010 0000000000
0000000000 0000010000 00001 00000
task:

output constant fraction of 1-bits of A, each described by ORy-function
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Proving a Lower Bound

forgetting about graphs:

OO ==

0000001 000
0001000000
= ORN ,blockwise
0000000000

(0000000000

o - O O
—_ = = O

0000000000
0000000000
000000 1 000

0000000000

1
0
0
1

0000000000
00000000 1 0
00000000 1 0

00000 1 0000

task:
output constant fraction of 1-bits of A, each described by ORy-function
= relational problem composed with ORy

e {0, 1}

0010000000
0000000000
c {0’ 1 }Nn XNn

0000000000

00001 00000

40



Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORy-function ?
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Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORy-function ?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORy-function, is

Q(LVN).
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Proving a Lower Bound

? quantum lower bound for composition of
relational problem and ORy-function ?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational
problem, with lower bound L, composed with the ORy-function, is

Q(LVN).

for L = Q(n) and N = m/(né?):
Corollary

The quantum query complexity of explicity outputting an e-spectral
sparsifier of a graph with n nodes and m edges is

Q(y/mn/e).
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this work:
Qo

2]
© applications: quantum speedup for

max cut, min cut, min sz-cut, sparsest cut, ...

Laplacian solving, approximating resistances and random walk
properties, spectral clustering, ...
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Quantum Speedups by Quantum Sparsification
graph quantity P,
approximately preserved under sparsification
+
classical O(m) algorithm for P

0

quantum sparsify G to H in O(y/mn/¢)
+ classical algorithm on H in O(n/é?)

approximate 5(\/mn/6) quantum algorithm for P
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Cut Approximation

MIN CUT:

find cut (S, 5¢) that minimizes cut value cutg(S)




Cut Approximation

MIN CUT:

find cut (S, 5¢) that minimizes cut value cutg(S)

classically: can find MIN CUT in time O(m) (Karger '00)



Cut Approximation

MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN cUT of G
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Cut Approximation

MIN CUT of e-spectral sparsifier H
gives e-approximation of MIN cUT of G

quantum sparsify G to H in O(y/mn/e)
+ classical MIN CUT on H in O(n/¢?) (Karger '00)

= O(/mn/€) quantum algorithm for e-MIN CUT
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Cut Approximation

Classical Quantum (this work)
e-MIN CUT O(m) (Karger00) O(y/mn/e)
€-MIN s-CUT O(m + n/e%) (Peng'16) O(\/mn/e+n/e%)
V10g n-SPARSEST CUT/ O(m + n'*9) B(J 1 ni+9)
-BAL. SEPARATOR (Sherman’09)
.878-MAX CUT O(m) (Arora-Kale'07) O(y/mn)
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Laplacian Solving
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Laplacian Solving

general linear system Ax = b
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Laplacian Solving

general linear system Ax = b

given A and b, with nnz(A) = m,

complexity of approximating x is O(min{mn, n*}) (w < 2.373)
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Laplacian system Lx = b
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complexity of approximating x is O(1) [Spielman-Teng '04]
+
if H sparsifier of G then Lib ~ L:b
1
quantum algorithm to sparsify G to H in 5(\/;%/6)

+ solve Lyx = b classically in O(n/é?)

quantum algorithm for Laplacian solving in O(,/mn/¢)
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Laplacian Solving
Laplacian system Lx = b

given L and b, with nnz(L) = m,
complexity of approximating x is O(1) [Spielman-Teng '04]
+
if H sparsifier of G then Lib ~ L:b
1
quantum algorithm to sparsify G to H in 5(\/%/6)

+ solve Lyx = b classically in O(n/é?)

quantum algorithm for Laplacian solving in O(,/mn/¢)

(+ quantum reduction for symmetric, diagonally dominant systems)
48



Laplacian Solving and Friends

Classical Quantum (this work)
e-SDD Solving 5(}11) (8ST'04) 5(\/mn/e)
e-Effective Resistance B(m) O(\/mn/e)
m ~
(single) prior: O(y/mn/€*)
-Effective Resistance O(m +n/e* ~
‘ (m +n/) O(/mn/e+n/e)
(all) (Spielman-Srivastava’08)
0 _
O(1)-Cover Time (m) O(y/mn)
(Ding-Lee-Peres’10)
k bottom - O(y/mnje + kn/é
O(m + kn/) (v/mn/e +~ n/e”)
eigenvalues prior, k = 1: O(n? /)

Spectral k-means

clustering

O(m + npoly(k))

O(/mi + npoly(k))
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summary:

@ quantum algorithm for spectral sparsification in time 5(«/mn/6)
@ matching Q(y/mn/¢) lower bound

@ speedup for cut approximation, Laplacian solving, ...

open questions:

@ matching lower bounds for applications?
e.g., Q(y/mn/e) for approximate min cut or Laplacian solving?

@ our 5(\/mn/6) sparsification algorithm is tight for weighted graphs.
can we do better for unweighted graphs?

thank you! stay safe!
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