Quantum complexity of minimum cut

Simon Apers

(CWI, ULB)

with Ronald de Wolf (FOCS '20, arXiv:1911.07306), Troy Lee (CCC '21, arXiv:2011.09823) and Paweł Gawrychowski

Collège de France, June 2021

Graph

graph
$$G = (V, E, w)$$

|V| = n nodes, $|E| = m \le {n \choose 2}$ edges, weights w

cut in G= set of edges $C \subseteq E$ such that G - C is disconnected

cut in G= set of edges $C \subseteq E$ such that G - C is disconnected

minimum cut (value) in *G* = weight of cut with minimum total weight

cut in G= set of edges $C \subseteq E$ such that G - C is disconnected

minimum cut (value) in G = weight of cut with minimum total weight = $\min_{C \subseteq E} \{ w(C) \mid G - C \text{ disconnected} \}$

cut in G

= set of edges $C \subseteq E$ such that G - C is disconnected

 $\begin{array}{l} \mbox{minimum cut (value) in } G \\ \mbox{= weight of cut with minimum total weight} \\ \mbox{= } \min_{C \subseteq E} \{ w(C) \mid G - C \mbox{ disconnected} \} \\ \mbox{= } \min_{S \subset V} \{ w(E(S, S^c)) \} \end{array}$

fundamental problem

in graph theory and combinatorial optimization

fundamental problem

in graph theory and combinatorial optimization

relevant for graph robustness, graph partitioning (divide-and-conquer), VLSI design, ...

fundamental problem

in graph theory and combinatorial optimization

relevant for graph robustness, graph partitioning (divide-and-conquer), VLSI design, ...

related:

maximum flow, minimum *k*-cut, minimum *s*-*t* cut, sparsest cut, ...

long line of research

from 1970s (first polynomial algorithm by Podderyugin)

long line of research

from 1970s (first polynomial algorithm by Podderyugin)

through 1990s (first near-linear time $\widetilde{O}(m)$ algorithm by Karger)

long line of research

from 1970s (first polynomial algorithm by Podderyugin)

through 1990s (first near-linear time $\widetilde{O}(m)$ algorithm by Karger)

to today (recent breakthrough by Li, arXiv:2106.05513))

Deterministic Mincut in Almost-Linear Time

Jason Li^{*} Carnegie Mellon University

December 16, 2020

this work: quantum complexity of minimum cut

i.e., what is the complexity of solving minimum cut on a quantum computer?

Quantum query complexity

quantum query complexity of minimum cut

= total number of queries to input

Quantum query complexity

quantum query complexity of minimum cut

= total number of queries to input

! often trivial for classical algorithms, but sublinear for quantum algorithms

Quantum query complexity

quantum query complexity of minimum cut

= total number of queries to input

! often trivial for classical algorithms, but sublinear for quantum algorithms

e.g., # queries to string $x \in \{0, 1\}^N$ to determine OR(x)?

classically = $\Omega(N)$, quantum = $O(\sqrt{N})$ (Grover search)

adjacency matrix of G = (V, E, w):

$$A = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots \\ w_{1,2} & w_{2,2} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{R}^{n \times n}$$

input size $= n^2$

adjacency matrix of G = (V, E, w):

$$A = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots \\ w_{1,2} & w_{2,2} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{R}^{n \times n}$$

input size = n^2

query:

 $|i,j,0\rangle \mapsto |i,j,w_{i,j}\rangle$

adjacency list of G = (V, E, w): (1): (2, $w_{1,2}$), (6, $w_{1,6}$), ... (2): (3, $w_{2,3}$), ... : (n): ... input size = $m \le \binom{n}{2}$

adjacency list of G = (V, E, w): (1): $(2, w_{1,2}), (6, w_{1,6}), \ldots$ (2): $(3, w_{2,3}), \ldots$ 4 $(n): \ldots$ input size $= m \leq \binom{n}{2}$ query: $|i, k, 0, 0\rangle \mapsto |i, k, n_k(i), w_{i, n_k(i)}\rangle$

Quantum time complexity

quantum time complexity of minimum cut

= total number of elementary gates, queries, QRAM operations*

* quantum-read/classical-write RAM

Why study quantum complexity of these problems?

Why study quantum complexity of these problems?

• long-term applications and better understanding of quantum computing

Why study quantum complexity of these problems?

• long-term applications and better understanding of quantum computing

new insights in classical algorithms
(similar to streaming, dynamic, distributed, deterministic, ... settings)

Why study quantum complexity of these problems?

• long-term applications and better understanding of quantum computing

new insights in classical algorithms
(similar to streaming, dynamic, distributed, deterministic, ... settings)

• "true" complexity of a problem?

Why study quantum complexity of these problems?

• long-term applications and better understanding of quantum computing

new insights in classical algorithms
(similar to streaming, dynamic, distributed, deterministic, ... settings)

• "true" complexity of a problem?

see e.g. talk "Quantum algorithms for optimization" by Ronald de Wolf at Simons' institute ('21) Quantum algorithms and graph problems

common caveats:

Quantum algorithms and graph problems

common caveats:

(subquadratic) polynomial speedup

Quantum algorithms and graph problems

common caveats:

(subquadratic) polynomial speedup

QRAM requirements

 \bullet Grover search: $O(n^{1.5}),\, \widetilde{O}(n^{1.428\ldots})$ (103)

 \bullet Grover search: $O(n^{1.5}),\, \widetilde{O}(n^{1.428\ldots})$ ('03)

• Grover search + quantum walks, learning graphs, ...: $\widetilde{O}(n^{1.3})$ (15), $O(n^{1.296...})$ (12), $O(n^{1.285...})$ (13), $\widetilde{O}(n^{1.25})$ (14)

* results by [Szegedy, '03], [Magniez-Santha-Szegedy, SICOMP'07], [Belovs, STOC'12],

[Lee-Magniez-Santha, SODA'13], [Le Gall, FOCS '14]

 \bullet Grover search: $O(n^{1.5}),\, \widetilde{O}(n^{1.428\ldots})$ ('03)

• Grover search + quantum walks, learning graphs, ...: $\widetilde{O}(n^{1.3})$ (15), $O(n^{1.296...})$ (12), $O(n^{1.285...})$ (13), $\widetilde{O}(n^{1.25})$ (14)

$\leftrightarrow \Omega(n)$ lower bound

* results by [Szegedy, '03], [Magniez-Santha-Szegedy, SICOMP'07], [Belovs, STOC'12],

[Lee-Magniez-Santha, SODA'13], [Le Gall, FOCS '14]

 \bullet Grover search: $O(n^{1.5}),\, \widetilde{O}(n^{1.428\ldots})$ (103)

• Grover search + quantum walks, learning graphs, ...: $\widetilde{O}(n^{1.3})_{(05)}, O(n^{1.296...})_{(12)}, O(n^{1.285...})_{(13)}, \widetilde{O}(n^{1.25})_{(14)}$

 $\leftrightarrow \Omega(n)$ lower bound

related to element distinctness often paired with new tools in quantum query complexity

* results by [Szegedy, '03], [Magniez-Santha-Szegedy, SICOMP'07], [Belovs, STOC'12],

[Lee-Magniez-Santha, SODA'13], [Le Gall, FOCS '14]

Example: connectivity

Is graph G connected?

Example: connectivity

Is graph G connected?

Theorem (Dürr-Heiligman-Høyer-Mhalla, SICOMP '06) The quantum complexity of connectivity is

 $\widetilde{\Theta}(n^{3/2})$ [M] and $\widetilde{\Theta}(n)$ [L].
Example: connectivity

Is graph G connected?

Theorem (Dürr-Heiligman-Høyer-Mhalla, SICOMP '06) The quantum complexity of connectivity is

 $\widetilde{\Theta}(n^{3/2})$ [M] and $\widetilde{\Theta}(n)$ [L].

 $\rightarrow \Omega(n^{3/2})$ [M] and $\Omega(n)$ [L] for minimum cut!

Quantum query bounds for minimum cut

quantum query complexity problem:

given quantum query access to

determine Hamming weight $|x| = \sum x_{ij}$

quantum query complexity problem:

given quantum query access to

determine Hamming weight $|x| = \sum x_{ij}$

[Beals-Buhrman-Cleve-Mosca-de Wolf, FOCS '98]: "counting" requires $n^2/2$ quantum queries to $x \rightarrow$ no quantum speedup for counting

minimum cut instance [M]:

minimum cut instance [M]:

value minimum cut w(C) = |x|, so counting reduces to minimum cut

minimum cut instance [M]:

value minimum cut w(C) = |x|, so counting reduces to minimum cut

no quantum speedup for minimum cut!

"approximate counting" loophole:

"approximate counting" loophole:

quantum speedup for ϵ -approximating |x|[Brassard-Høyer-Mosca-Tapp '00]

"approximate counting" loophole:

quantum speedup for ϵ -approximating |x|[Brassard-Høyer-Mosca-Tapp '00]

quantum speedup for approximate minimum cut?

"small counting" loophole:

"small counting" loophole:

quantum speedup for exact counting if |x| is *small*

"small counting" loophole:

quantum speedup for exact counting if |x| is *small*

if $|x| \le k$, then computing |x| requires $O(\sqrt{n^2k})$ quantum queries (use Grover search to find all 1's in *x*)

"small counting" loophole:

quantum speedup for exact counting if |x| is *small*

if $|x| \le k$, then computing |x| requires $O(\sqrt{n^2k})$ quantum queries (use Grover search to find all 1's in *x*)

 \downarrow

quantum speedup for minimum cut with few edges?

Quantum algorithm for *approximate* minimum cut

based on [A - de Wolf, FOCS '20]

key idea (exploits "approximate counting" loophole):

key idea (exploits "approximate counting" loophole):

1. quantum speedup for constructing "graph sparsifier"

key idea (exploits "approximate counting" loophole):

1. quantum speedup for constructing "graph sparsifier"

2. solve minimum cut in sparsifier

cut sparsifier *H* is subgraph of *G* such that

cut sparsifier *H* is subgraph of *G* such that

• *H* is sparse

cut sparsifier *H* is subgraph of *G* such that

- *H* is sparse
- cuts in *H* approximate cuts in *G*:

$$w_H(E_H(S, S^c)) = (1 \pm \epsilon) w_G(E_G(S, S^c)), \quad \forall S \subset V$$

cut sparsifier H is subgraph of G such that

- *H* is sparse
- cuts in *H* approximate cuts in *G*:

$$w_H(E_H(S, S^c)) = (1 \pm \epsilon) w_G(E_G(S, S^c)), \quad \forall S \subset V$$

! in particular: minimum cut of $H \epsilon$ -approximates minimum cut of G

? how sparse can H be ?

Theorem (Karger '94, Benczúr-Karger '96)

Every graph *G* has an ϵ -cut sparsifier *H* with $\widetilde{O}(n/\epsilon^2)$ edges, which can be found in time $\widetilde{O}(m)$.

? how sparse can H be ?

Theorem (Karger '94, Benczúr-Karger '96)

Every graph *G* has an ϵ -cut sparsifier *H* with $\widetilde{O}(n/\epsilon^2)$ edges, which can be found in time $\widetilde{O}(m)$.

 building block of many classical approximation algorithms for graph problems

? how sparse can H be ?

Theorem (Karger '94, Benczúr-Karger '96)

Every graph *G* has an ϵ -cut sparsifier *H* with $\widetilde{O}(n/\epsilon^2)$ edges, which can be found in time $\widetilde{O}(m)$.

- building block of many classical approximation algorithms for graph problems
- crucial component in efficient classical algorithms for *exact* minimum cut (Karger, J. ACM '00)

Quantum speedup for sparsification

Theorem (A-de Wolf '20)

There is a quantum algorithm for constructing an ϵ -cut sparsifier H in time $\widetilde{O}(\sqrt{mn}/\epsilon)$ [L], which is optimal.

Quantum speedup for sparsification

Theorem (A-de Wolf '20)

There is a quantum algorithm for constructing an ϵ -cut sparsifier H in time $\widetilde{O}(\sqrt{mn}/\epsilon)$ [L], which is optimal.

e.g., if $m \sim n^2$ then speedup from $\sim n^2$ (classical) to $\sim n^{3/2}$ (quantum)

Iterative sparsification: [Koutis-Xu '16, Fung-Hariharan-Harvey-Panigrahi '19]

Iterative sparsification: [Koutis-Xu '16, Fung-Hariharan-Harvey-Panigrahi '19]

• construct $\widetilde{O}(1/\epsilon^2)$ minimum spanning trees and keep these edges

Iterative sparsification: [Koutis-Xu '16, Fung-Hariharan-Harvey-Panigrahi '19]

construct *O*(1/ε²) minimum spanning trees and keep these edges
 keep any remaining edge with probability 1/2

Iterative sparsification: [Koutis-Xu '16, Fung-Hariharan-Harvey-Panigrahi '19]

construct \$\tilde{O}(1/\epsilon^2)\$ minimum spanning trees and keep these edges
keep any remaining edge with probability 1/2

 \rightarrow *repeat* $O(\log n)$ *times:* ϵ -cut sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges

• use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ minimum spanning trees and keep these edges

- **1** use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ minimum spanning trees and keep these edges
- implicitly sample any remaining edge with probability 1/2

- **1** use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ minimum spanning trees and keep these edges
- implicitly sample any remaining edge with probability 1/2

 \rightarrow *repeat* $O(\log n)$ *times:* ϵ -cut sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges

- **1** use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ minimum spanning trees and keep these edges
- implicitly sample any remaining edge with probability 1/2

 \rightarrow repeat $O(\log n)$ times: ϵ -cut sparsifier with $\widetilde{O}(n/\epsilon^2)$ edges

total complexity (after more work): $\tilde{O}(\sqrt{mn}/\epsilon)$

1: Construct ϵ -sparsifier H

 $\triangleright \widetilde{O}(\sqrt{mn}/\epsilon)$ queries/time

- 1: Construct ϵ -sparsifier H
- 2: Solve minimum cut in H

 $\triangleright \widetilde{O}(\sqrt{mn}/\epsilon)$ queries/time \triangleright no queries, $\widetilde{O}(n)$ time

Theorem

There is a quantum algorithm for ϵ -approximating the minimum cut of a weighted graph in time $\widetilde{O}(\sqrt{mn}/\epsilon)$.

Theorem

There is a quantum algorithm for ϵ -approximating the minimum cut of a weighted graph in time $\widetilde{O}(\sqrt{mn}/\epsilon)$.

Similarly, quantum speedup for

- approximating other cut problems (max cut, sparsest cut, ...)
- approximately solving Laplacian systems

Ο...

Theorem

There is a quantum algorithm for ϵ -approximating the minimum cut of a weighted graph in time $\widetilde{O}(\sqrt{mn}/\epsilon)$.

Similarly, quantum speedup for

- approximating other cut problems (max cut, sparsest cut, ...)
- approximately solving Laplacian systems

Ο...

Open question: is $\widetilde{O}(\sqrt{mn}/\epsilon)$ optimal?

Quantum algorithm for exact minimum cut in simple graphs

based on [A - Lee, CCC '21]

1. simple graphs have small number of edges in minimum cuts

- 1. simple graphs have small number of edges in minimum cuts
- 2. find these edges using graph sparsifier and Grover search

- 1. simple graphs have small number of edges in minimum cuts
- 2. find these edges using graph sparsifier and Grover search

! first focus on query complexity

"simple graphs have *small* number of edges involved in minimum cuts" [Kawarabayashi-Thorup, J. ACM '18]

Kawarabayashi-Thorup partition

Theorem (Kawarabayashi-Thorup)

For simple graphs, there exists partition $V = P_1 \cup \cdots \cup P_k$ such that

- there are O(n) edges between partitions,
- 2 partition "respects" all (nontrivial) near-minimum cuts.

Algorithm 1 Quantum query algorithm for MIN CUT

1:

Algorithm 2 Quantum query algorithm for MIN CUT

1: construct KT partition $V = P_1 \cup \cdots \cup P_k$

▷ ?? queries

Algorithm 3 Quantum query algorithm for MIN CUT

1: construct KT partition $V = P_1 \cup \cdots \cup P_k$

▷ ?? queries

2: find O(n) edges between partitions

 $\triangleright O(n^{3/2})_M / O(\sqrt{mn})_L$ queries

Algorithm 4 Quantum query algorithm for MIN CUT

- 1: construct KT partition $V = P_1 \cup \cdots \cup P_k$
- 2: find O(n) edges between partitions
- 3: find minimum cut of contracted graph

.

 $\triangleright O(n^{3/2})_M / O(\sqrt{mn})_L$ queries

▷ no queries

1: construct KT partition $V = P_1 \cup \cdots \cup P_k$

⊳ ?? queries

1: construct KT partition $V = P_1 \cup \cdots \cup P_k$

▷ ?? queries

greedy algorithm:

repeatedly refine partition by iterating over near-minimum cuts

1: construct KT partition $V = P_1 \cup \cdots \cup P_k$

▷ ?? queries

greedy algorithm:

repeatedly refine partition by iterating over near-minimum cuts

too costly!

observation:

cut values in $G \approx$ cut values in sparsifier H

observation:

cut values in $G \approx$ cut values in sparsifier H

hence,

KT partition of $H \approx$ KT partition of G

observation:

cut values in $G \approx$ cut values in sparsifier H

hence,

KT partition of $H \approx$ KT partition of G

1:

1: Construct sparsifier H of G

 $\triangleright \widetilde{O}(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$ queries

- 1: Construct sparsifier H of G
- 2: construct KT partition of H

 $\triangleright \widetilde{O}(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$ queries

⊳ no queries

- 1: Construct sparsifier H of G
- 2: construct KT partition of H
- 3: find O(n) edges of *G* between partitions

 $\triangleright \widetilde{O}(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$ queries

▷ no queries

 $\triangleright O(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$ queries

1: Construct sparsifier *H* of *G* 2: construct KT partition of *H* 3: find O(n) edges of *G* between partitions 4: solve minimum cut on contracted graph in time $\widetilde{O}(n)$ $\sim no$ queries $\sim O(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$ queries $\sim O(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$ queries

Adjacency matrix model

Adjacency matrix model

algorithm for minimum cut with quantum query complexity $\widetilde{O}(n^{3/2})$

+

 $\Omega(n^{3/2})$ lower bound on quantum query complexity of connectivity (Dürr-Heiligman-Høyer-Mhalla '06)

Adjacency matrix model

algorithm for minimum cut with quantum query complexity $\widetilde{O}(n^{3/2})$

+

 $\Omega(n^{3/2})$ lower bound on quantum query complexity of connectivity (Dürr-Heiligman-Høyer-Mhalla '06)

Theorem

The quantum query complexity of minimum cut in simple graphs is

 $\widetilde{\Theta}(n^{3/2})$ [M].

algorithm for minimum cut with quantum query complexity $\tilde{O}(\sqrt{mn})$

+

 $\Omega(n)$ lower bound on quantum query complexity of connectivity (Dürr-Heiligman-Høyer-Mhalla '06)

algorithm for minimum cut with quantum query complexity $\tilde{O}(\sqrt{mn})$

+

 $\Omega(n)$ lower bound on quantum query complexity of connectivity (Dürr-Heiligman-Høyer-Mhalla '06)

=

Theorem (adjacency list)

The quantum query complexity of minimum cut in simple graphs is

 $\widetilde{O}(\sqrt{mn})$ [L] and $\Omega(n)$ [L].

algorithm for minimum cut with quantum query complexity $\tilde{O}(\sqrt{mn})$

+

 $\Omega(n)$ lower bound on quantum query complexity of connectivity (Dürr-Heiligman-Høyer-Mhalla '06)

=

Theorem (adjacency list)

The quantum query complexity of minimum cut in simple graphs is

 $\widetilde{O}(\sqrt{mn})$ [L] and $\Omega(n)$ [L].

! open question: $\widetilde{O}(n)$ quantum algorithm ?

Time efficient quantum algorithm for minimum cut

based on [A - Lee - Gawrychowski]
Quantum algorithm for minimum cut (adj.list)

- 1: Construct sparsifier H of G
- 2: construct KT partition of H
- 3: find O(n) edges of G between partitions
- 4: solve MIN CUT on contracted graph in time $\widetilde{O}(n)$

 \triangleright time $\widetilde{O}(n^{3/2})_M/\widetilde{O}(\sqrt{mn})_L$ [A-de Wolf '20]

⊳ time ???

 \triangleright time $O(n^{3/2})_M/O(\sqrt{mn})_L$

 \triangleright time $\widetilde{O}(n)$ [Karger '00]

1: construct KT partition of H

⊳ time ???

1: construct KT partition of H

⊳ time ???

•

Kawarabayashi-Thorup (STOC '15): classical algorithm for simple graphs in time $\widetilde{O}(m)$

⊳ time ???

•

Kawarabayashi-Thorup (STOC '15): classical algorithm for simple graphs in time $\widetilde{O}(m)$

•

A-Lee (CCC '21): quantum algorithm for weighted graphs in time $\widetilde{O}(n^{3/2})$ [M,L]

⊳ time ???

•

Kawarabayashi-Thorup (STOC '15): classical algorithm for simple graphs in time $\widetilde{O}(m)$

•

A-Lee (CCC '21): quantum algorithm for weighted graphs in time $\widetilde{O}(n^{3/2})$ [M,L]

•

A-Gawrychowski-Lee (forthcoming): classical algorithm for weighted graphs in time $\widetilde{O}(m)$ quantum algorithm for weighted graphs in time $\widetilde{O}(\sqrt{mn})$ [L] **Classical algorithm for KT partition**

key ideas:

- 1. "tree-respecting cuts"
- 2. generating set for KT partition

introduced by Karger (J. ACM '00)

graph G, spanning tree T

introduced by Karger (J. ACM '00)

graph G, spanning tree T

cut "2-respects" T if cuts at most 2 edges of T

introduced by Karger (J. ACM '00)

graph G, spanning tree T

cut "2-respects" *T* if cuts at most 2 edges of *T* ! at most $\binom{n-1}{2}$ 2-respecting cuts

Lemma (Karger)

Any near-minimum cut 2-respects "random" spanning tree T with large probability.

Lemma (Karger)

Any near-minimum cut 2-respects "random" spanning tree T with large probability.

corollary: at most $\tilde{O}(n^2)$ near-minimum cuts

Lemma (Karger)

Any near-minimum cut 2-respects "random" spanning tree T with large probability.

corollary: at most $\tilde{O}(n^2)$ near-minimum cuts

"better" greedy algorithm for KT partition: iterate over 2-respecting cuts

Lemma (Karger)

Any near-minimum cut 2-respects "random" spanning tree T with large probability.

corollary: at most $\tilde{O}(n^2)$ near-minimum cuts

"better" greedy algorithm for KT partition: iterate over 2-respecting cuts

! still too slow

Lemma (A-Lee '20, A-Gawrychowski-Lee '21)

Lemma (A-Lee '20, A-Gawrychowski-Lee '21)

• Characterize "generating" set of *O*(*n*) 2-respecting cuts that induces KT partition

Lemma (A-Lee '20, A-Gawrychowski-Lee '21)

- Characterize "generating" set of *O*(*n*) 2-respecting cuts that induces KT partition
- Find generating set in time $\widetilde{O}(m)$ (classically) or $\widetilde{O}(\sqrt{mn})$ (quantum)

Theorem

Can construct the KT partition of a weighted graph in time $\widetilde{O}(m)$ (classically) or $\widetilde{O}(\sqrt{mn})$ (quantumly).

Theorem

Can construct the KT partition of a weighted graph in time $\widetilde{O}(m)$ (classically) or $\widetilde{O}(\sqrt{mn})$ (quantumly).

Corollary

There is a quantum algorithm for finding a minimum cut in a simple graph with time complexity $\tilde{O}(n^{3/2})_M/\tilde{O}(\sqrt{mn})_L$.

Quantum time/query complexity of minimum cut:

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup

weighted graphs, approximate: $\widetilde{O}(n^{3/2}/\epsilon)_M / \widetilde{O}(\sqrt{mn}/\epsilon)_L$

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup weighted graphs, approximate: $\widetilde{O}(n^{3/2}/\epsilon)_M / \widetilde{O}(\sqrt{mn}/\epsilon)_L$ simple graphs, exact: $\widetilde{\Theta}(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup weighted graphs, approximate: $\widetilde{O}(n^{3/2}/\epsilon)_M / \widetilde{O}(\sqrt{mn}/\epsilon)_L$ simple graphs, exact: $\widetilde{\Theta}(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$

Key tools:

graph sparsification and Kawarabayashi-Thorup partition

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup weighted graphs, approximate: $\widetilde{O}(n^{3/2}/\epsilon)_M / \widetilde{O}(\sqrt{mn}/\epsilon)_L$ simple graphs, exact: $\widetilde{\Theta}(n^{3/2})_M / \widetilde{O}(\sqrt{mn})_L$

Key tools:

graph sparsification and Kawarabayashi-Thorup partition

Open questions:

$\widetilde{O}(n)_L$ quantum algorithms for minimum cut and sparsification in simple graphs?

 $\Omega(\sqrt{mn}/\epsilon)_L$ lower bound for approximate minimum cut?