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Graph

graph G = (V,E,w)

|V| = n nodes, |E| = m ≤
(n

2

)
edges, weights w
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Minimum cut
cut in G

= set of edges C ⊆ E such that G − C is disconnected

minimum cut (value) in G
= weight of cut with minimum total weight

= minC⊆E{w(C) | G − C disconnected}
= minS⊂V{w(E(S, Sc))}
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Minimum cut
fundamental problem

in graph theory and combinatorial optimization

relevant for graph robustness,
graph partitioning (divide-and-conquer), VLSI design, . . .

related:
maximum flow, minimum k-cut,

minimum s-t cut, sparsest cut, . . .
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Minimum cut

long line of research

from 1970s
(first polynomial algorithm by Podderyugin)

through 1990s
(first near-linear time Õ(m) algorithm by Karger)

to today
(recent breakthrough by Li, arXiv:2106.05513))
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Quantum complexity

this work:
quantum complexity of minimum cut

i.e., what is the complexity of solving
minimum cut on a quantum computer?
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Quantum query complexity

quantum query complexity of minimum cut

= total number of queries to input

! often trivial for classical algorithms,
but sublinear for quantum algorithms

e.g., # queries to string x ∈ {0, 1}N to determine OR(x)?

classically = Ω(N), quantum = O(
√

N) (Grover search)

6



Quantum query complexity

quantum query complexity of minimum cut

= total number of queries to input

! often trivial for classical algorithms,
but sublinear for quantum algorithms

e.g., # queries to string x ∈ {0, 1}N to determine OR(x)?

classically = Ω(N), quantum = O(
√

N) (Grover search)

6



Quantum query complexity

quantum query complexity of minimum cut

= total number of queries to input

! often trivial for classical algorithms,
but sublinear for quantum algorithms

e.g., # queries to string x ∈ {0, 1}N to determine OR(x)?

classically = Ω(N), quantum = O(
√

N) (Grover search)

6



Quantum query complexity of graph problem

adjacency matrix of G = (V,E,w):

A =

w1,1 w1,2 . . .
w1,2 w2,2 . . .

...
...

. . .

 ∈ Rn×n

input size = n2

query:

|i, j, 0⟩ 7→ |i, j,wi,j⟩
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Quantum query complexity of graph problem

adjacency list of G = (V,E,w):

(1): (2,w1,2), (6,w1,6), . . .
(2): (3,w2,3), . . .

...
(n): . . .

input size = m ≤
(n

2

)

query:

|i, k, 0, 0⟩ 7→ |i, k, nk(i),wi,nk(i)⟩
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Quantum query complexity of graph problem

adjacency list of G = (V,E,w):

(1): (2,w1,2), (6,w1,6), . . .
(2): (3,w2,3), . . .
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(n): . . .

input size = m ≤
(n

2

)
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Quantum time complexity

quantum time complexity of minimum cut

= total number of elementary gates,
queries, QRAM operations*

* quantum-read/classical-write RAM
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Motivation: quantum algorithms and graph problems

Why study quantum complexity of these problems?

• long-term applications and
better understanding of quantum computing

• new insights in classical algorithms
(similar to streaming, dynamic, distributed, deterministic, . . . settings)

• “true” complexity of a problem?

see e.g. talk “Quantum algorithms for optimization”
by Ronald de Wolf at Simons’ institute (’21)
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Quantum algorithms and graph problems

common caveats:

(subquadratic) polynomial speedup

QRAM requirements
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Example: triangle finding
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Example: triangle finding

• Grover search:
O(n1.5), Õ(n1.428...) (’03)

• Grover search + quantum walks, learning graphs, . . . :
Õ(n1.3) (’05), O(n1.296...) (’12), O(n1.285...) (’13), Õ(n1.25) (’14)

↔ Ω(n) lower bound

related to element distinctness
often paired with new tools in quantum query complexity

* results by [Szegedy, ’03], [Magniez-Santha-Szegedy, SICOMP’07], [Belovs, STOC’12],

[Lee-Magniez-Santha, SODA’13], [Le Gall, FOCS ’14]
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Example: connectivity

Is graph G connected?

Theorem (Dürr-Heiligman-Høyer-Mhalla, SICOMP ’06)
The quantum complexity of connectivity is

Θ̃(n3/2) [M] and Θ̃(n) [L].

→ Ω(n3/2) [M] and Ω(n) [L] for minimum cut!
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Quantum query bounds
for minimum cut
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Limits on quantum speedups

quantum query complexity problem:

given quantum query access to

determine Hamming weight |x| =
∑

xij

[Beals-Buhrman-Cleve-Mosca-de Wolf, FOCS ’98]:
“counting” requires n2/2 quantum queries to x

→ no quantum speedup for counting
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Limits on quantum speedups

minimum cut instance [M]:

value minimum cut w(C) = |x|,
so counting reduces to minimum cut

↓

no quantum speedup for minimum cut!

16



Limits on quantum speedups

minimum cut instance [M]:

value minimum cut w(C) = |x|,
so counting reduces to minimum cut

↓

no quantum speedup for minimum cut!

16



Limits on quantum speedups

minimum cut instance [M]:

value minimum cut w(C) = |x|,
so counting reduces to minimum cut

↓

no quantum speedup for minimum cut!

16



Limits on quantum speedups

“approximate counting” loophole:

quantum speedup for ϵ-approximating |x|
[Brassard-Høyer-Mosca-Tapp ’00]

↓

quantum speedup for approximate minimum cut?
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Limits on quantum speedups

“small counting” loophole:

quantum speedup for exact counting if |x| is small

if |x| ≤ k, then computing |x| requires O(
√

n2k) quantum queries
(use Grover search to find all 1’s in x)

↓

quantum speedup for minimum cut with few edges?
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Quantum algorithm
for approximate minimum cut

based on [A - de Wolf, FOCS ’20]

19



key idea (exploits “approximate counting” loophole):

1. quantum speedup for constructing “graph sparsifier”

2. solve minimum cut in sparsifier
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Graph sparsification

cut sparsifier H is subgraph of G such that

H is sparse
cuts in H approximate cuts in G:

wH(EH(S, Sc)) = (1 ± ϵ)wG(EG(S, Sc)), ∀S ⊂ V
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Graph sparsification

cut sparsifier H is subgraph of G such that

H is sparse
cuts in H approximate cuts in G:

wH(EH(S, Sc)) = (1 ± ϵ)wG(EG(S, Sc)), ∀S ⊂ V

! in particular: minimum cut of H ϵ-approximates minimum cut of G
21



Graph sparsification

? how sparse can H be ?

Theorem (Karger ’94, Benczúr-Karger ’96)

Every graph G has an ϵ-cut sparsifier H with Õ(n/ϵ2) edges, which can
be found in time Õ(m).

building block of many classical approximation algorithms for
graph problems
crucial component in efficient classical algorithms for exact
minimum cut (Karger, J. ACM ’00)
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Quantum speedup for sparsification

Theorem (A-de Wolf ’20)
There is a quantum algorithm for constructing an ϵ-cut sparsifier H in
time Õ(

√
mn/ϵ) [L], which is optimal.

e.g., if m ∼ n2 then speedup from ∼ n2 (classical) to ∼ n3/2 (quantum)
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Classical algorithm for sparsification

Iterative sparsification:
[Koutis-Xu ’16, Fung-Hariharan-Harvey-Panigrahi ’19]

1 construct Õ(1/ϵ2) minimum spanning trees and keep these edges
2 keep any remaining edge with probability 1/2

→ repeat O(log n) times: ϵ-cut sparsifier with Õ(n/ϵ2) edges

24
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Quantum algorithm for sparsification

1 use quantum algorithm to construct Õ(1/ϵ2) minimum spanning
trees and keep these edges

2 implicitly sample any remaining edge with probability 1/2

→ repeat O(log n) times: ϵ-cut sparsifier with Õ(n/ϵ2) edges

total complexity (after more work): Õ(
√

mn/ϵ)
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trees and keep these edges

2 implicitly sample any remaining edge with probability 1/2

→ repeat O(log n) times: ϵ-cut sparsifier with Õ(n/ϵ2) edges
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Quantum speedup for approximating minimum cut

1: Construct ϵ-sparsifier H ▷ Õ(
√

mn/ϵ) queries/time
2: Solve minimum cut in H ▷ no queries, Õ(n) time
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Quantum speedup for approximating minimum cut

Theorem
There is a quantum algorithm for ϵ-approximating the minimum cut of a
weighted graph in time Õ(

√
mn/ϵ).

Similarly, quantum speedup for

approximating other cut problems (max cut, sparsest cut, . . . )
approximately solving Laplacian systems
. . .

Open question: is Õ(
√

mn/ϵ) optimal?
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Quantum algorithm for
exact minimum cut in simple graphs

based on [A - Lee, CCC ’21]
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key idea (exploits “small counting” loophole):

1. simple graphs have small number of edges in minimum cuts

2. find these edges using graph sparsifier and Grover search

! first focus on query complexity
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“simple graphs have small number of edges involved in minimum cuts”
[Kawarabayashi-Thorup, J. ACM ’18]
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Kawarabayashi-Thorup partition

Theorem (Kawarabayashi-Thorup)
For simple graphs, there exists partition V = P1 ∪ · · · ∪ Pk such that

1 there are O(n) edges between partitions,
2 partition “respects” all (nontrivial) near-minimum cuts.

31



Quantum query algorithm

Algorithm 1 Quantum query algorithm for MIN CUT
1:
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Quantum query algorithm

Algorithm 2 Quantum query algorithm for MIN CUT

1: construct KT partition V = P1 ∪ · · · ∪ Pk

▷ ?? queries
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Quantum query algorithm

Algorithm 3 Quantum query algorithm for MIN CUT

1: construct KT partition V = P1 ∪ · · · ∪ Pk

▷ ?? queries
2: find O(n) edges between partitions

▷ O(n3/2)M/O(
√

mn)L queries
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Quantum query algorithm

Algorithm 4 Quantum query algorithm for MIN CUT

1: construct KT partition V = P1 ∪ · · · ∪ Pk

▷ ?? queries
2: find O(n) edges between partitions

▷ O(n3/2)M/O(
√

mn)L queries
3: find minimum cut of contracted graph

▷ no queries
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Quantum query algorithm

1: construct KT partition V = P1 ∪ · · · ∪ Pk

▷ ?? queries

greedy algorithm:
repeatedly refine partition by iterating over near-minimum cuts

too costly!
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Quantum query algorithm

observation:

cut values in G ≈ cut values in sparsifier H

hence,

KT partition of H ≈ KT partition of G
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Quantum query algorithm

observation:

cut values in G ≈ cut values in sparsifier H

(query access) (explicit!)

hence,

KT partition of H ≈ KT partition of G

34



Quantum query algorithm for minimum cut

1:
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Quantum query algorithm for minimum cut

1: Construct sparsifier H of G
▷ Õ(n3/2)M/Õ(

√
mn)L queries
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Quantum query algorithm for minimum cut

1: Construct sparsifier H of G
▷ Õ(n3/2)M/Õ(

√
mn)L queries

2: construct KT partition of H
▷ no queries

3: find O(n) edges of G between partitions
▷ O(n3/2)M/Õ(

√
mn)L queries

4: solve minimum cut on contracted graph in time Õ(n)
▷ no queries
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Adjacency matrix model

algorithm for minimum cut with quantum query complexity Õ(n3/2)

+

Ω(n3/2) lower bound on quantum query complexity of connectivity
(Dürr-Heiligman-Høyer-Mhalla ’06)

=

Theorem
The quantum query complexity of minimum cut in simple graphs is

Θ̃(n3/2) [M].
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Adjacency list model:

algorithm for minimum cut with quantum query complexity Õ(
√

mn)

+

Ω(n) lower bound on quantum query complexity of connectivity
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=

Theorem (adjacency list)
The quantum query complexity of minimum cut in simple graphs is

Õ(
√

mn) [L] and Ω(n) [L].
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! open question: Õ(n) quantum algorithm ?

37



Adjacency list model:

algorithm for minimum cut with quantum query complexity Õ(
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Õ(
√

mn) [L] and Ω(n) [L].
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Time efficient quantum algorithm
for minimum cut

based on [A - Lee - Gawrychowski]
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Quantum algorithm for minimum cut (adj.list)

1: Construct sparsifier H of G
▷ time Õ(n3/2)M/Õ(

√
mn)L [A-de Wolf ’20]

2: construct KT partition of H
▷ time ???

3: find O(n) edges of G between partitions
▷ time O(n3/2)M/O(

√
mn)L

4: solve MIN CUT on contracted graph in time Õ(n)
▷ time Õ(n) [Karger ’00]
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Quantum algorithm for minimum cut

1: construct KT partition of H
▷ time ???

•

Kawarabayashi-Thorup (STOC ’15):
classical algorithm for simple graphs in time Õ(m)

•

A-Lee (CCC ’21):
quantum algorithm for weighted graphs in time Õ(n3/2) [M,L]

•

A-Gawrychowski-Lee (forthcoming):
classical algorithm for weighted graphs in time Õ(m)

quantum algorithm for weighted graphs in time Õ(
√

mn) [L]
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Classical algorithm for KT partition

key ideas:

1. “tree-respecting cuts”

2. generating set for KT partition
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Tree-respecting cuts

introduced by Karger (J. ACM ’00)

graph G, spanning tree T

cut “2-respects” T if cuts at most 2 edges of T

! at most
(n−1

2

)
2-respecting cuts
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Tree-respecting cuts

Lemma (Karger)
Any near-minimum cut 2-respects “random” spanning tree T with large
probability.

corollary: at most Õ(n2) near-minimum cuts

↓

“better” greedy algorithm for KT partition:
iterate over 2-respecting cuts

! still too slow
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Generating set

Lemma (A-Lee ’20, A-Gawrychowski-Lee ’21)

Characterize “generating” set of O(n) 2-respecting cuts that
induces KT partition
Find generating set in time Õ(m) (classically) or Õ(

√
mn)

(quantum)
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Generating set

Theorem

Can construct the KT partition of a weighted graph in time Õ(m)
(classically) or Õ(

√
mn) (quantumly).

Corollary
There is a quantum algorithm for finding a minimum cut in a simple
graph with time complexity Õ(n3/2)M/Õ(

√
mn)L.
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Summary

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup

weighted graphs, approximate: Õ(n3/2/ϵ)M / Õ(
√

mn/ϵ)L

simple graphs, exact: Θ̃(n3/2)M / Õ(
√

mn)L

Key tools:

graph sparsification and Kawarabayashi-Thorup partition

Open questions:

Õ(n)L quantum algorithms for
minimum cut and sparsification in simple graphs?

Ω(
√

mn/ϵ)L lower bound for approximate minimum cut?
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Õ(n)L quantum algorithms for
minimum cut and sparsification in simple graphs?

Ω(
√

mn/ϵ)L lower bound for approximate minimum cut?

46



Summary

Quantum time/query complexity of minimum cut:

weighted graphs, exact: no quantum speedup

weighted graphs, approximate: Õ(n3/2/ϵ)M / Õ(
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