QUANTUM WALKS, THE DISCRETE WAVE EQUATION AND CHEBYSHEV POLYNOMIALS

Simon Apers (CNRS & IRIF, Paris) with Laurent Miclo

PCQT-IQC workshop, Waterloo (Canada), May '24

blast from the past Calgary '17

when X. - X. = S(X.), V/200 - St. - 5 min Low MR, X. 1576) M 6459 - 5 min Thimmed. Thi- 5 (M/27), 10 600 - 6 Min Thimmed. Thi- 5 (M/27), 10 600 - 12 (S. 5/1K)- The 62 S X 3 Ag (2). Constant a localist algorithm we that I X .. I Xe- m he s E for all tation TASE: give a sample side to The starting from my rade 100

blast from the past Calgary '17

with X. - X. = S(X.), V/200 & . $\begin{array}{l} -5 & \min \delta \sin (m^2 + S + M_{\rm S} M_{\rm S}) + m \, k_{\rm H} \, {\rm s}_{\rm H}^2 \\ -5 & \lim_{k \to \infty} |T|^2 \sin (m^2 + T)^2 + S(\pi) \, {\rm s}_{\rm H} \, {\rm s}_{\rm H} \, {\rm s}_{\rm H} \, {\rm s}_{\rm H} \\ + 1 \, {\rm s}_{\rm H} \,$ TASK: give a sample siden to The

IS SPECULAT 1:

RWS FROM DIFFUSION EQUATION QWS FROM WAVE EQUATION VC BOUND CONVERSE VC BOUND?

RWs from diffusion equation

QWS FROM WAVE EQUATION

VC BOUND

CONVERSE VC BOUND?

 $\dot{u} = \Delta u$ (over \mathbb{R}^d)

 $\dot{u} = \Delta u$ (over \mathbb{R}^d) \downarrow u(t+1) = Pu(t)(over \mathbb{Z}^d)

 $\dot{u} = \Delta u$ (over \mathbb{R}^d) \downarrow u(t+1) = Pu(t)(over \mathbb{Z}^d)

$$\begin{split} & \text{time } \mathbb{Z} \to \varepsilon \mathbb{Z}, \qquad \text{space } \mathbb{Z}^d \to \sqrt{\varepsilon} \mathbb{Z}^d \\ & u_\varepsilon(t+\varepsilon) = P_{\sqrt{\varepsilon}} u_\varepsilon(t) \\ & \text{then} \\ & \lim_{\varepsilon \to 0} u_\varepsilon(t_\varepsilon, x_\varepsilon) = u(t, x) \\ & \text{(for all } t, x \text{ and } \lim_{\varepsilon \to 0} t_\varepsilon = t, \lim_{t \to 0} x_\varepsilon = x) \end{split}$$

 $\dot{u} = \Delta u$ (over \mathbb{R}^d) \downarrow u(t+1) = Pu(t)(over \mathbb{Z}^d)

$$\begin{split} & \text{time } \mathbb{Z} \to \varepsilon \mathbb{Z}, \qquad \text{space } \mathbb{Z}^d \to \sqrt{\varepsilon} \mathbb{Z}^d \\ & u_\varepsilon(t+\varepsilon) = P_{\sqrt{\varepsilon}} u_\varepsilon(t) \\ & \text{then} \\ & \lim_{\varepsilon \to 0} u_\varepsilon(t_\varepsilon, x_\varepsilon) = u(t, x) \\ & \text{(for all } t_{\tau, x} \text{ and } \lim_{\varepsilon \to 0} t_\varepsilon = t, \lim_{\varepsilon \to 0} x_\varepsilon = x) \end{split}$$

generalizing: RW over graph G

RWs FROM DIFFUSION EQUATION

QWS FROM WAVE EQUATION

VC BOUND

CONVERSE VC BOUND?

spotting block encodings in the wild

spotting block encodings in the wild

spotting block encodings in the wild

$$\dot{u} = v,$$

 $\dot{v} = \Delta u$

$$\begin{split} \dot{u} &= v, \\ \dot{v} &= \Delta u \\ \downarrow \\ u(t+1) &= Pu(t) + v(t), \\ v(t+1) &= -(I-P^2)u(t) + Pv(t) \end{split}$$

$$\begin{split} \dot{u} &= v, \\ \dot{v} &= \Delta u \\ \downarrow \\ u(t+1) &= Pu(t) + v(t), \\ v(t+1) &= -(I-P^2)u(t) + Pv(t) \end{split}$$

time $\mathbb{Z} \to \varepsilon \mathbb{Z}$, space $\mathbb{Z}^d \to \varepsilon \mathbb{Z}^d$		
$u_{\varepsilon}(t+\varepsilon) = P_{\varepsilon}u_{\varepsilon}(t) + \varepsilon v_{\varepsilon}(t)$		
$v_{\varepsilon}(t+\varepsilon) = -\frac{1}{\varepsilon}(I-P_{\varepsilon}^2)u_{\varepsilon}(t) + P_{\varepsilon}v_{\varepsilon}(t)$		
then		
$\lim_{\varepsilon \to 0} u_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}) = u(t, x)$		
$\lim_{\varepsilon \to 0} v_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}) = v(t, x)$		
(for all t, x and $\lim_{\varepsilon \to 0} t_{\varepsilon} = t$, $\lim_{\varepsilon \to 0} x_{\varepsilon} = x$)		

$$\begin{split} \dot{u} &= v, \\ \dot{v} &= \Delta u \\ \downarrow \\ u(t+1) &= Pu(t) + v(t), \\ v(t+1) &= -(I-P^2)u(t) + Pv(t) \end{split}$$

$$\begin{split} & \lim_{\varepsilon \to 0} \mathbb{Z} \to \varepsilon \mathbb{Z}, \quad \text{space } \mathbb{Z}^d \to \varepsilon \mathbb{Z}^d \\ u_\varepsilon(t+\varepsilon) &= P_\varepsilon u_\varepsilon(t) + \varepsilon v_\varepsilon(t) \\ v_\varepsilon(t+\varepsilon) &= -\frac{1}{\varepsilon} (I-P_\varepsilon^2) u_\varepsilon(t) + P_\varepsilon v_\varepsilon(t) \\ & \text{then} \\ & \lim_{\varepsilon \to 0} u_\varepsilon(t_\varepsilon, x_\varepsilon) = u(t, x) \\ & \lim_{\varepsilon \to 0} v_\varepsilon(t_\varepsilon, x_\varepsilon) = v(t, x) \\ & \text{(for all } t, x \text{ and } \lim_{\varepsilon \to 0} u_\varepsilon = t, \lim_{\varepsilon \to 0} x_\varepsilon = x) \end{split}$$

! (energy) conservation $E = \|\sqrt{I - P^2}u\|^2 + \|v\|^2$

change of variables: $w = \sqrt{I - P^2}u$ $\begin{bmatrix} w(t+1)\\v(t+1) \end{bmatrix} = \begin{bmatrix} P & \sqrt{I - P^2}\\ -\sqrt{I - P^2} & P \end{bmatrix} \begin{bmatrix} w(t)\\v(t) \end{bmatrix}$

change of variables: $w = \sqrt{I - P^2}u$ $\begin{bmatrix} w(t+1) \\ v(t+1) \end{bmatrix} = \begin{bmatrix} P & \sqrt{I - P^2} \\ -\sqrt{I - P^2} & P \end{bmatrix} \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$

= unitary block encoding of *P*!

change of variables: $w = \sqrt{I - P^2} u$ $\begin{bmatrix} w(t+1) \\ v(t+1) \end{bmatrix} = \begin{bmatrix} P & \sqrt{I - P^2} \\ -\sqrt{I - P^2} & P \end{bmatrix} \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$

= unitary block encoding of *P*!

t steps:

$$\begin{bmatrix} P & \sqrt{I-P^2} \\ -\sqrt{I-P^2} & P \end{bmatrix}^t = \begin{bmatrix} T_t(P) & \cdot \\ \cdot & \cdot \end{bmatrix}$$

change of variables: $w = \sqrt{I - P^2}u$ $\begin{bmatrix} w(t+1) \\ v(t+1) \end{bmatrix} = \begin{bmatrix} P & \sqrt{I - P^2} \\ -\sqrt{I - P^2} & P \end{bmatrix} \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$ = unitary block encoding of *P*!

t steps:

$$\begin{bmatrix} P & \sqrt{I-P^2} \\ -\sqrt{I-P^2} & P \end{bmatrix}^t = \begin{bmatrix} T_t(P) & \cdot \\ \cdot & \cdot \end{bmatrix}$$

P RW over graph G \downarrow discrete wave equation or quantum walk over G

RWs FROM DIFFUSION EQUATION

QWS FROM WAVE EQUATION

VC BOUND

CONVERSE VC BOUND?

random walks and Chebyshev polynomials?

random walks and Chebyshev polynomials?

7. Additional Exercises	1=0
	varopoulos-carne 🛛 🔷 🔿
Chapter 13: Escape Rate of Random Walks and Embeddings	Vighlight all Match case Whole words
 Basic Examples 	423
2. The Varopoulos-Carne Bound	429
An Application to Mixing Time	431
Markov Type of Metric Spaces	436
Embeddings of Finite Metric Spaces	440
A Diffusive Lower Bound for Cayley Graphs	447
7. Branching Number of a Graph	450
Tree-Indexed Random Walks	453
9. Notes	456
 Collected In-Text Exercises 	461
 Additional Exercises 	462

(from "Probability on Trees and Networks" by Lyons and Peres)

random walks and Chebyshev polynomials?

7. Additional Exercises	1=0	
	varopoulos-carne 🛛 🔶 🕲	
Chapter 13: Escape Rate of Random Walks and Embeddings	Highlight all Match case Whole words	
 Basic Examples 	423	
2. The Varopoulos-Carne Bound	429	
An Application to Mixing Time	431	
Markov Type of Metric Spaces	436	
Embeddings of Finite Metric Spaces	440	
6. A Diffusive Lower Bound for Cayley Graphs	447	
Branching Number of a Graph	450	
 Tree-Indexed Random Walks 	453	
9. Notes	456	
 Collected In-Text Exercises 	461	
 Additional Exercises 	462	

(from "Probability on Trees and Networks" by Lyons and Peres)

Varopoulos-Carne bound:

 $P^t(x,y) \le e^{-d(x,y)^2/t}$

Chebyshev expansion

$$P^t = \sum_{k=0}^t \alpha_k T_k(P)$$

Chebyshev expansion

Chebyshev expansion

corollary 1: mixing time $\tau \ge \operatorname{diam}(G)^2/\log(n)$

corollary 1: mixing time $\tau \geq \operatorname{diam}(G)^2/\log(n)$ corollary 2: block encoding $\begin{bmatrix} P^t & \cdot \\ \cdot & \cdot \end{bmatrix}$ using \sqrt{t} QW steps QUANTUM FAST-FORWARDING: MARKOV CHAINS AND GRAPH PROPERTY TESTING MARKOV CHAINS AND GRAPH PROPERTY TESTING ISMN APERS Tam SECRET; INRIA Paris, France CHAIN TO M. NRIAL Paris, France Department of Electronic Action System, Gene University, Edujuan (simon.aper Gint University, Edujuan (simon.aper Gint University, Edujuan

```
\begin{array}{l} \mbox{corollary 1: mixing time } \tau \geq \mbox{diam}(G)^2/\log(n) \\ \mbox{corollary 2: block encoding } \begin{bmatrix} P^t & \cdot \\ \cdot & \cdot \end{bmatrix} \mbox{using } \sqrt{t} \mbox{ QW steps} \\ \mbox{guantum fast-forwarding:} \\ \mbox{Markov chains and graph property testing} \\ \mbox{Markov chains and test efforming } \mbox{Markov chains and test efforming
```

basis for QW search in $\sqrt{\text{hitting time}}$

Quadratic speedup for finding marked vertices by Quantum walks

Authors: 📳 Andris Ambainis, 😩 András Gilyén, 😩 Stacey Jeffery, 😩 Martins Kokainis Authors Info & Claims

STOC 2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing • June 2020 • Pages 412-424 • https://doi.org/10.1145/3357713.3384252

RWS FROM DIFFUSION EQUATION QWS FROM WAVE EQUATION VC BOUND CONVERSE VC BOUND?

VC bound: random walks diffusive

VC bound: random walks diffusive

converse VC bound: quantum walks ballistic?

$$\sum_{y \notin B_x(t/2)} T_t(P)_{x,y}^2 \in \Omega(1)$$

yes (and known) for lattices

yes (and known) for lattices

A-Miclo (arXiv:2402.07809): weak limit for quantum walks on lattices

RW on \mathbb{Z} :

$$P = \frac{1}{2}P_{\leftarrow} + \frac{1}{2}P_{\rightarrow}$$

RW on \mathbb{Z} :

$$P = \frac{1}{2}P_{\leftarrow} + \frac{1}{2}P_{\rightarrow}$$
$$T_t(P) = \frac{1}{2}(P_{\leftarrow})^t + \frac{1}{2}(P_{\rightarrow})^t$$

RW on \mathbb{Z} :

$$P = \frac{1}{2}P_{\leftarrow} + \frac{1}{2}P_{\rightarrow}$$
$$T_t(P) = \frac{1}{2}(P_{\leftarrow})^t + \frac{1}{2}(P_{\rightarrow})^t$$

RW on \mathbb{Z}^2 :

$$P = \frac{1}{2}P_{\leftrightarrow} + \frac{1}{2}P_{\updownarrow}$$
$$T_t(P) = ?$$

RW on \mathbb{Z} :

$$P = \frac{1}{2}P_{\leftarrow} + \frac{1}{2}P_{\rightarrow}$$

$$T_t(P) = \frac{1}{2} (P_{\leftarrow})^t + \frac{1}{2} (P_{\rightarrow})^t$$

RW on \mathbb{Z}^2 :

$$P = \frac{1}{2}P_{\leftrightarrow} + \frac{1}{2}P_{\uparrow}$$
$$T_t(P) = ?$$

! commuting variables $x = P_{\leftrightarrow}$ and $y = P_{\uparrow}$ so

$$T_t\left(\frac{x+y}{2}\right) = \sum a_{p,q}T_p(x)T_q(y)$$

RW on \mathbb{Z} :

$$P = \frac{1}{2}P_{\leftarrow} + \frac{1}{2}P_{\rightarrow}$$

$$T_t(P) = \frac{1}{2} (P_{\leftarrow})^t + \frac{1}{2} (P_{\rightarrow})^t$$

RW on \mathbb{Z}^2 :

$$P = \frac{1}{2}P_{\leftrightarrow} + \frac{1}{2}P_{\uparrow}$$
$$T_t(P) = ?$$

! commuting variables $x = P_{\leftrightarrow}$ and $y = P_{\uparrow}$ so

$$T_t\left(\frac{x+y}{2}\right) = \sum a_{p,q}T_p(x)T_q(y)$$

ightarrow weak limit induced by $\sum a_{p,q}^2 \delta_{p/t,q/t}$

more generally (open questions):

quantum walk $T_t(P)$ on graphs?

more generally (open questions):

quantum walk $T_t(P)$ on graphs?

other polynomial $f_t(P)$?

more generally (open questions):

quantum walk $T_t(P)$ on graphs?

other polynomial $f_t(P)$?

conjecture:

quantum walks can mix in $\widetilde{O}\left(\sqrt{\text{mixing time}}\right)$

more generally (open questions):

quantum walk $T_t(P)$ on graphs?

other polynomial $f_t(P)$?

conjecture: quantum walks can mix in $\widetilde{O}\left(\sqrt{\text{mixing time}}\right)$

thanks!

Extra slides: discrete approximation

$$\begin{split} \underline{\dot{u}} &= \Delta u \\ \text{time } \mathbb{Z} \to \varepsilon \mathbb{Z}, \qquad \text{space } \mathbb{Z}^d \to \sqrt{\varepsilon} \mathbb{Z}^d \\ u_{\varepsilon}(t + \varepsilon) &= P_{\sqrt{\varepsilon}} u_{\varepsilon}(t) \\ & \text{then} \end{split}$$

$$\lim_{\varepsilon \to 0} u_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}) = u(t, x)$$

(for all t, x and $\lim_{\varepsilon \to 0} t_{\varepsilon} = t$, $\lim_{\varepsilon \to 0} x_{\varepsilon} = x$)

Extra slides: discrete approximation

$$\dot{u} = v, \quad \dot{v} = \Delta u$$

time $\mathbb{Z} \to \varepsilon \mathbb{Z}$, space $\mathbb{Z}^d \to \varepsilon \mathbb{Z}^d$ $u_{\varepsilon}(t+\varepsilon) = P_{\varepsilon}u_{\varepsilon}(t) + \varepsilon v_{\varepsilon}(t)$ $v_{\varepsilon}(t+\varepsilon) = -\frac{1}{\varepsilon}(I - P_{\varepsilon}^2)u_{\varepsilon}(t) + P_{\varepsilon}v_{\varepsilon}(t)$

then

$$\lim_{\varepsilon \to 0} u_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}) = u(t, x)$$
$$\lim_{\varepsilon \to 0} v_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}) = v(t, x)$$

(for all t, x and $\lim_{\varepsilon \to 0} t_{\varepsilon} = t$, $\lim_{\varepsilon \to 0} x_{\varepsilon} = x$)

Extra slides: Gram-Schmidt walk

Gram-Schmidt on (ordered) set of vectors

$$\{ |x\rangle, P |x\rangle, P^2 |x\rangle, \dots, P^t |x\rangle \}$$

