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Diffusion equation

u̇ = ∆u
(over Rd)

↓

u(t + 1) = Pu(t)
(over Zd)

generalizing:
RW over graph G
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or,

spotting block encodings in the wild
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Wave equation

u̇ = v,

v̇ = ∆u

↓
u(t + 1) = Pu(t) + v(t),

v(t + 1) = −(I − P2)u(t) + Pv(t)

! (energy) conservation
E = ∥

√
I − P2u∥2 + ∥v∥2
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Wave equation

change of variables: w =
√

I − P2u[
w(t + 1)
v(t + 1)

]
=

[
P

√
I − P2

−
√

I − P2 P

] [
w(t)
v(t)

]

= unitary block encoding of P!

t steps:[
P

√
I − P2

−
√

I − P2 P

]t

=

[
Tt(P) ·
· ·

]

P RW over graph G
↓

discrete wave equation or quantum walk over G
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random walks and Chebyshev polynomials?

(from “Probability on Trees and Networks” by Lyons and Peres)

Varopoulos-Carne bound:

Pt(x, y) ≤ e−d(x,y)2/t
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Varopoulos-Carne bound

Chebyshev expansion

Pt =

t∑
k=0

αkTk(P)

≈ε

√
t log(1/ε)∑

k=0

αkTk(P)
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Varopoulos-Carne bound

corollary 1: mixing time τ ≥ diam(G)2/ log(n)

corollary 2: block encoding
[

Pt ·
· ·

]
using

√
t QW steps

basis for QW search in
√

hitting time
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VC bound: random walks diffusive

converse VC bound: quantum walks ballistic?∑
y/∈Bx(t/2)

Tt(P)2
x,y ∈ Ω(1)
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Converse VC bound?

yes (and known) for lattices

A-Miclo (arXiv:2402.07809):
weak limit for quantum walks on lattices
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Converse VC bound?
RW on Z:

P =
1
2

P← +
1
2

P→

Tt(P) =
1
2
(P←)t +

1
2
(P→)t

RW on Z2:

P =
1
2

P↔ +
1
2

P↕

Tt(P) =?

! commuting variables x = P↔ and y = P↕ so

Tt

(
x + y

2

)
=

∑
ap,qTp(x)Tq(y)

→ weak limit induced by
∑

a2
p,qδp/t,q/t
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Converse VC bound?

more generally (open questions):

quantum walk Tt(P) on graphs?

other polynomial ft(P)?

conjecture:
quantum walks can mix in Õ

(√
mixing time

)

thanks!
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Extra slides: discrete approximation

u̇ = ∆u

time Z → εZ, space Zd →
√
εZd

uε(t + ε) = P√εuε(t)

then

lim
ε→0

uε(tε, xε) = u(t, x)

(for all t, x and limε→0 tε = t, limε→0 xε = x)
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Extra slides: discrete approximation

u̇ = v, v̇ = ∆u

time Z → εZ, space Zd → εZd

uε(t + ε) = Pεuε(t) + εvε(t)

vε(t + ε) = −1
ε
(I − P2

ε)uε(t) + Pεvε(t)

then

lim
ε→0

uε(tε, xε) = u(t, x)

lim
ε→0

vε(tε, xε) = v(t, x)

(for all t, x and limε→0 tε = t, limε→0 xε = x)
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Extra slides: Gram-Schmidt walk

Gram-Schmidt on (ordered) set of vectors

{|x⟩ ,P |x⟩ ,P2 |x⟩ , . . . ,Pt |x⟩}
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