
Cut query algorithms with star contraction

Simon Apers
(CNRS, IRIF)

joint work with
Y. Efron, P. Gawrychowski, T. Lee, S. Mukhopadhyay, D. Nanongkai

FILOFOCS, Tel-Aviv University, June 2022

Talk outline

1 Cut queries and results

2 Star contraction

3 Quantum cut queries

4 Classical cut queries

5 Open questions

1

Talk outline

1 Cut queries and results

2 Star contraction

3 Quantum cut queries

4 Classical cut queries

5 Open questions

2

Cut query complexity

unweighted, undirected graph G = (V,E)

edge connectivity λ(G) = min∅≠S⊂V |E(S, Sc)|

cut query S ⊆ V 7→ |E(S, Sc)|

? cut query complexity of λ(G) ?

3

Cut query complexity

unweighted, undirected graph G = (V,E)

edge connectivity λ(G) = min∅≠S⊂V |E(S, Sc)|

cut query S ⊆ V 7→ |E(S, Sc)|

? cut query complexity of λ(G) ?

3

Cut query complexity

unweighted, undirected graph G = (V,E)

edge connectivity λ(G) = min∅≠S⊂V |E(S, Sc)|

cut query S ⊆ V 7→ |E(S, Sc)|

? cut query complexity of λ(G) ?

3

Cut query complexity

motivated
by submodular function minimization:

cut function S 7→ |E(S, Sc)| is submodular

connected
to communication complexity,

streaming, matrix-vector queries, . . .

4

Cut query complexity

motivated
by submodular function minimization:

cut function S 7→ |E(S, Sc)| is submodular

connected
to communication complexity,

streaming, matrix-vector queries, . . .

4

Cut query complexity

some former results

• connectivity:
O(n log n) classical queries (Harvey ’08)

Õ(1) quantum queries (Lee-Santha-Zhang, SODA’20)

• edge connectivity:
O(n log3 n) classical queries (Rubinstein-Schramm-Weinberg, ITCS’18)

Õ(n) classical queries for weighted graphs (Mukhopadhyay-Nanongkai, STOC’20)

our main results

Theorem
(i) The cut query complexity of (edge) connectivity is O(n).
(ii) The quantum cut query complexity of edge connectivity is Õ(

√
n).

5

Cut query complexity

some former results

• connectivity:
O(n log n) classical queries (Harvey ’08)

Õ(1) quantum queries (Lee-Santha-Zhang, SODA’20)

• edge connectivity:
O(n log3 n) classical queries (Rubinstein-Schramm-Weinberg, ITCS’18)

Õ(n) classical queries for weighted graphs (Mukhopadhyay-Nanongkai, STOC’20)

our main results

Theorem
(i) The cut query complexity of (edge) connectivity is O(n).
(ii) The quantum cut query complexity of edge connectivity is Õ(

√
n).

5

Cut query complexity

some former results

• connectivity:
O(n log n) classical queries (Harvey ’08)

Õ(1) quantum queries (Lee-Santha-Zhang, SODA’20)

• edge connectivity:
O(n log3 n) classical queries (Rubinstein-Schramm-Weinberg, ITCS’18)

Õ(n) classical queries for weighted graphs (Mukhopadhyay-Nanongkai, STOC’20)

our main results

Theorem
(i) The cut query complexity of (edge) connectivity is O(n).
(ii) The quantum cut query complexity of edge connectivity is Õ(

√
n).

5

Cut query complexity

some former results

• connectivity:
O(n log n) classical queries (Harvey ’08)

Õ(1) quantum queries (Lee-Santha-Zhang, SODA’20)

• edge connectivity:
O(n log3 n) classical queries (Rubinstein-Schramm-Weinberg, ITCS’18)

Õ(n) classical queries for weighted graphs (Mukhopadhyay-Nanongkai, STOC’20)

our main results

Theorem

(i) The cut query complexity of (edge) connectivity is O(n).
(ii) The quantum cut query complexity of edge connectivity is Õ(

√
n).

5

Cut query complexity

some former results

• connectivity:
O(n log n) classical queries (Harvey ’08)

Õ(1) quantum queries (Lee-Santha-Zhang, SODA’20)

• edge connectivity:
O(n log3 n) classical queries (Rubinstein-Schramm-Weinberg, ITCS’18)

Õ(n) classical queries for weighted graphs (Mukhopadhyay-Nanongkai, STOC’20)

our main results

Theorem
(i) The cut query complexity of (edge) connectivity is O(n).

(ii) The quantum cut query complexity of edge connectivity is Õ(
√

n).

5

Cut query complexity

some former results

• connectivity:
O(n log n) classical queries (Harvey ’08)

Õ(1) quantum queries (Lee-Santha-Zhang, SODA’20)

• edge connectivity:
O(n log3 n) classical queries (Rubinstein-Schramm-Weinberg, ITCS’18)

Õ(n) classical queries for weighted graphs (Mukhopadhyay-Nanongkai, STOC’20)

our main results

Theorem
(i) The cut query complexity of (edge) connectivity is O(n).
(ii) The quantum cut query complexity of edge connectivity is Õ(

√
n).

5

Classical lower bound

k cut query algorithm implies O(k log n) communication complexity

hence,
O(n) is optimal if communication complexity of connectivity is Ω(n log n)

which we conjecture,
but open since Babai-Frankl-Simon (FOCS’86)

best known (comm. compl.):
Ω(n) for connectivity (BFS’86)

Ω(n log log n) for edge connectivity (Assadi-Dudeja, SOSA’21)

6

Classical lower bound

k cut query algorithm implies O(k log n) communication complexity

hence,
O(n) is optimal if communication complexity of connectivity is Ω(n log n)

which we conjecture,
but open since Babai-Frankl-Simon (FOCS’86)

best known (comm. compl.):
Ω(n) for connectivity (BFS’86)

Ω(n log log n) for edge connectivity (Assadi-Dudeja, SOSA’21)

6

Classical lower bound

k cut query algorithm implies O(k log n) communication complexity

hence,
O(n) is optimal if communication complexity of connectivity is Ω(n log n)

which we conjecture,
but open since Babai-Frankl-Simon (FOCS’86)

best known (comm. compl.):
Ω(n) for connectivity (BFS’86)

Ω(n log log n) for edge connectivity (Assadi-Dudeja, SOSA’21)

6

Classical lower bound

k cut query algorithm implies O(k log n) communication complexity

hence,
O(n) is optimal if communication complexity of connectivity is Ω(n log n)

which we conjecture,
but open since Babai-Frankl-Simon (FOCS’86)

best known (comm. compl.):
Ω(n) for connectivity (BFS’86)

Ω(n log log n) for edge connectivity (Assadi-Dudeja, SOSA’21)

6

Talk outline

1 Cut queries and results

2 Star contraction

3 Quantum cut queries

4 Classical cut queries

5 Open questions

7

Star contraction

1 each vertex becomes center with probability Õ(1/δ(G))

2 each remaining vertex merges with random neighboring center

w.c.p., contracts to multigraph G′ with

|V(G′)| ∈ Õ(|V(G)|/δ(G)) and λ(G′) = λ(G) (if λ(G) < δ(G))

related to “2-out contraction” (Ghaffari-Nowicki-Thorup, SODA’20)

8

Star contraction

1 each vertex becomes center with probability Õ(1/δ(G))

2 each remaining vertex merges with random neighboring center

w.c.p., contracts to multigraph G′ with

|V(G′)| ∈ Õ(|V(G)|/δ(G)) and λ(G′) = λ(G) (if λ(G) < δ(G))

related to “2-out contraction” (Ghaffari-Nowicki-Thorup, SODA’20)

8

Star contraction

1 each vertex becomes center with probability Õ(1/δ(G))

2 each remaining vertex merges with random neighboring center

w.c.p., contracts to multigraph G′ with

|V(G′)| ∈ Õ(|V(G)|/δ(G)) and λ(G′) = λ(G) (if λ(G) < δ(G))

related to “2-out contraction” (Ghaffari-Nowicki-Thorup, SODA’20)

8

Star contraction

1 each vertex becomes center with probability Õ(1/δ(G))

2 each remaining vertex merges with random neighboring center

w.c.p., contracts to multigraph G′ with

|V(G′)| ∈ Õ(|V(G)|/δ(G)) and λ(G′) = λ(G) (if λ(G) < δ(G))

related to “2-out contraction” (Ghaffari-Nowicki-Thorup, SODA’20)

8

Star contraction

1 each vertex becomes center with probability Õ(1/δ(G))

2 each remaining vertex merges with random neighboring center

w.c.p., contracts to multigraph G′ with

|V(G′)| ∈ Õ(|V(G)|/δ(G)) and λ(G′) = λ(G) (if λ(G) < δ(G))

related to “2-out contraction” (Ghaffari-Nowicki-Thorup, SODA’20)

8

Star contraction

1 each vertex becomes center with probability Õ(1/δ(G))

2 each remaining vertex merges with random neighboring center

w.c.p., contracts to multigraph G′ with

|V(G′)| ∈ Õ(|V(G)|/δ(G)) and λ(G′) = λ(G) (if λ(G) < δ(G))

related to “2-out contraction” (Ghaffari-Nowicki-Thorup, SODA’20)

8

Star contraction

Why does it preserve a minimum cut?

(assume vertices merge with random neighbor)

vertex v can have ≤ d(v)/2 edges across (nontrivial) min cut

but at most δ(G) < d(v) edges in min cut

so few vertices with large failure probability

9

Star contraction

Why does it preserve a minimum cut?
(assume vertices merge with random neighbor)

vertex v can have ≤ d(v)/2 edges across (nontrivial) min cut

but at most δ(G) < d(v) edges in min cut

so few vertices with large failure probability

9

Star contraction

Why does it preserve a minimum cut?
(assume vertices merge with random neighbor)

vertex v can have ≤ d(v)/2 edges across (nontrivial) min cut

but at most δ(G) < d(v) edges in min cut

so few vertices with large failure probability

9

Star contraction

Why does it preserve a minimum cut?
(assume vertices merge with random neighbor)

vertex v can have ≤ d(v)/2 edges across (nontrivial) min cut

but at most δ(G) < d(v) edges in min cut

so few vertices with large failure probability

9

Star contraction

Why does it preserve a minimum cut?
(assume vertices merge with random neighbor)

vertex v can have ≤ d(v)/2 edges across (nontrivial) min cut

but at most δ(G) < d(v) edges in min cut

so few vertices with large failure probability

9

Talk outline

1 Cut queries and results

2 Star contraction

3 Quantum cut queries

4 Classical cut queries

5 Open questions

10

Quantum cut queries

first studied by Lee-Santha-Zhang (SODA’21)
prove big separation with classical cut queries

rough idea: (generalized) cut query

|E(X, S)| = 1T
XAG1S = fS(X)

evaluates linear function fS

↓

using Bernstein-Vazirani,
can learn matrix-vector product AG1S

using Õ(1) quantum cut queries

11

Quantum cut queries

first studied by Lee-Santha-Zhang (SODA’21)
prove big separation with classical cut queries

rough idea: (generalized) cut query

|E(X, S)| = 1T
XAG1S = fS(X)

evaluates linear function fS

↓

using Bernstein-Vazirani,
can learn matrix-vector product AG1S

using Õ(1) quantum cut queries

11

Quantum cut queries

first studied by Lee-Santha-Zhang (SODA’21)
prove big separation with classical cut queries

rough idea: (generalized) cut query

|E(X, S)| = 1T
XAG1S = fS(X)

evaluates linear function fS

↓

using Bernstein-Vazirani,
can learn matrix-vector product AG1S

using Õ(1) quantum cut queries

11

Quantum cut queries

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓

deal with high degree case through star contraction

2nd primitive (LSZ’21):
connectivity/spanning tree with Õ(1) quantum queries

↓

deal with low degree case through “tree packing”

12

Quantum cut queries

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓

deal with high degree case through star contraction

2nd primitive (LSZ’21):
connectivity/spanning tree with Õ(1) quantum queries

↓

deal with low degree case through “tree packing”

12

Quantum cut queries

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓

deal with high degree case through star contraction

2nd primitive (LSZ’21):
connectivity/spanning tree with Õ(1) quantum queries

↓

deal with low degree case through “tree packing”

12

Quantum cut queries

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓

deal with high degree case through star contraction

2nd primitive (LSZ’21):
connectivity/spanning tree with Õ(1) quantum queries

↓

deal with low degree case through “tree packing”

12

High degree case (δ(G) ≥
√

n)

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓
star contraction:

learn neighborhoods of Õ(
√

n) centers with Õ(
√

n) queries

returns multigraph with n/δ(G) ∈ Õ(
√

n) vertices
can run classical cut query algorithm (MN’20)

13

High degree case (δ(G) ≥
√

n)

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓
star contraction:

learn neighborhoods of Õ(
√

n) centers with Õ(
√

n) queries

returns multigraph with n/δ(G) ∈ Õ(
√

n) vertices
can run classical cut query algorithm (MN’20)

13

High degree case (δ(G) ≥
√

n)

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓
star contraction:

learn neighborhoods of Õ(
√

n) centers with Õ(
√

n) queries

returns multigraph with n/δ(G) ∈ Õ(
√

n) vertices
can run classical cut query algorithm (MN’20)

13

High degree case (δ(G) ≥
√

n)

1st primitive (LSZ’21):
learn all neighbors of a vertex with Õ(1) quantum queries

↓
star contraction:

learn neighborhoods of Õ(
√

n) centers with Õ(
√

n) queries*

returns multigraph with n/δ(G) ∈ Õ(
√

n) vertices
can run classical cut query algorithm (MN’20)

* unclear for GNT’s 2-out contraction

13

Low degree case (δ(G) <
√

n)

“pack” spanning trees F1,F2, . . .

from max-flow min-cut theorem:
if k ≥ λ(G) then λ(∪k

i=1Fi) = λ(G)

algorithm:
pack

√
n spanning trees = Õ(

√
n) quantum cut queries

compute minimum cut of tree packing = no queries

14

Low degree case (δ(G) <
√

n)

“pack” spanning trees F1,F2, . . .

from max-flow min-cut theorem:
if k ≥ λ(G) then λ(∪k

i=1Fi) = λ(G)

algorithm:
pack

√
n spanning trees = Õ(

√
n) quantum cut queries

compute minimum cut of tree packing = no queries

14

Low degree case (δ(G) <
√

n)

“pack” spanning trees F1,F2, . . .

from max-flow min-cut theorem:
if k ≥ λ(G) then λ(∪k

i=1Fi) = λ(G)

algorithm:
pack

√
n spanning trees = Õ(

√
n) quantum cut queries

compute minimum cut of tree packing = no queries

14

Talk outline

1 Cut queries and results

2 Star contraction

3 Quantum cut queries

4 Classical cut queries

5 Open questions

15

Classical cut queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

(ii) star contraction with O(n) queries

(iii) returns O(n/δ(G)) vertex graph, pack δ(G) trees with O(n) queries

16

Classical cut queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

(ii) star contraction with O(n) queries

(iii) returns O(n/δ(G)) vertex graph, pack δ(G) trees with O(n) queries

16

Classical cut queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

(ii) star contraction with O(n) queries

(iii) returns O(n/δ(G)) vertex graph, pack δ(G) trees with O(n) queries

16

Classical cut queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

(ii) star contraction with O(n) queries

(iii) returns O(n/δ(G)) vertex graph, pack δ(G) trees with O(n) queries

16

Connectivity

Harvey ’08: connectivity with O(n log n) cut queries
based on Prim’s (sequential) algorithm

! uses only 1 out of log n bits of cut query

↓

squeeze out more using separating matrix: (Grebinski-Kucherov ’98)
exists O(n/ log n)× n boolean matrix B such that

Bx ̸= By, ∀x ̸= y ∈ {0, 1}n

hence, can learn x from Bx (= O(n/ log n) queries yTx)

↓

implement Borůvka’s (parallel) spanning tree algorithm
with O(n/ log n) queries per round

O(log n) rounds so O(n) total complexity

17

Connectivity

Harvey ’08: connectivity with O(n log n) cut queries
based on Prim’s (sequential) algorithm

! uses only 1 out of log n bits of cut query

↓

squeeze out more using separating matrix: (Grebinski-Kucherov ’98)
exists O(n/ log n)× n boolean matrix B such that

Bx ̸= By, ∀x ̸= y ∈ {0, 1}n

hence, can learn x from Bx (= O(n/ log n) queries yTx)

↓

implement Borůvka’s (parallel) spanning tree algorithm
with O(n/ log n) queries per round

O(log n) rounds so O(n) total complexity

17

Connectivity

Harvey ’08: connectivity with O(n log n) cut queries
based on Prim’s (sequential) algorithm

! uses only 1 out of log n bits of cut query

↓

squeeze out more using separating matrix: (Grebinski-Kucherov ’98)
exists O(n/ log n)× n boolean matrix B such that

Bx ̸= By, ∀x ̸= y ∈ {0, 1}n

hence, can learn x from Bx (= O(n/ log n) queries yTx)

↓

implement Borůvka’s (parallel) spanning tree algorithm
with O(n/ log n) queries per round

O(log n) rounds so O(n) total complexity

17

Connectivity

Harvey ’08: connectivity with O(n log n) cut queries
based on Prim’s (sequential) algorithm

! uses only 1 out of log n bits of cut query

↓

squeeze out more using separating matrix: (Grebinski-Kucherov ’98)
exists O(n/ log n)× n boolean matrix B such that

Bx ̸= By, ∀x ̸= y ∈ {0, 1}n

hence, can learn x from Bx (= O(n/ log n) queries yTx)

↓

implement Borůvka’s (parallel) spanning tree algorithm
with O(n/ log n) queries per round

O(log n) rounds so O(n) total complexity

17

Connectivity

Harvey ’08: connectivity with O(n log n) cut queries
based on Prim’s (sequential) algorithm

! uses only 1 out of log n bits of cut query

↓

squeeze out more using separating matrix: (Grebinski-Kucherov ’98)
exists O(n/ log n)× n boolean matrix B such that

Bx ̸= By, ∀x ̸= y ∈ {0, 1}n

hence, can learn x from Bx (= O(n/ log n) queries yTx)

↓

implement Borůvka’s (parallel) spanning tree algorithm
with O(n/ log n) queries per round

O(log n) rounds so O(n) total complexity

17

Talk outline

1 Cut queries and results

2 Star contraction

3 Quantum cut queries

4 Classical cut queries

5 Open questions

18

Open questions

exponential quantum separations for approximate submodular
function minimization?

▶ e.g., approximate minimum cut with Õ(1) quantum cut queries?
▶ ! can learn approximate min degree with Õ(1) quantum cut queries

Lower bounds:
▶ Ω(n log n) communication complexity of (edge) connectivity?
▶ Ω̃(

√
n) quantum cut query complexity of min degree/cut?

Thank you!

19

Open questions

exponential quantum separations for approximate submodular
function minimization?

▶ e.g., approximate minimum cut with Õ(1) quantum cut queries?
▶ ! can learn approximate min degree with Õ(1) quantum cut queries

Lower bounds:
▶ Ω(n log n) communication complexity of (edge) connectivity?
▶ Ω̃(

√
n) quantum cut query complexity of min degree/cut?

Thank you!

19

Open questions

exponential quantum separations for approximate submodular
function minimization?

▶ e.g., approximate minimum cut with Õ(1) quantum cut queries?
▶ ! can learn approximate min degree with Õ(1) quantum cut queries

Lower bounds:
▶ Ω(n log n) communication complexity of (edge) connectivity?
▶ Ω̃(

√
n) quantum cut query complexity of min degree/cut?

Thank you!

19

	Cut queries and results
	Star contraction
	Quantum cut queries
	Classical cut queries
	Open questions

