Cut query algorithms with star contraction

Simon Apers (CNRS, IRIF)

joint work with Y. Efron, P. Gawrychowski, T. Lee, S. Mukhopadhyay, D. Nanongkai

FILOFOCS, Tel-Aviv University, June 2022

Talk outline

2 Star contraction

- Quantum cut queries
- 4 Classical cut queries

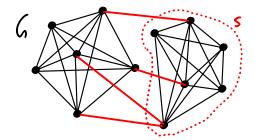
Talk outline

2) Star contraction

- 3 Quantum cut queries
- 4 Classical cut queries
- 5 Open questions

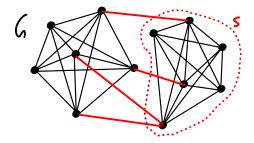
unweighted, undirected graph G = (V, E)

edge connectivity $\lambda(G) = \min_{\emptyset \neq S \subset V} |E(S, S^c)|$



unweighted, undirected graph G = (V, E)

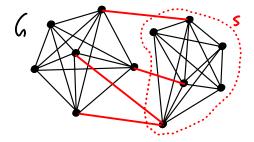
edge connectivity $\lambda(G) = \min_{\emptyset \neq S \subset V} |E(S, S^c)|$



cut query $S \subseteq V \mapsto |E(S, S^c)|$

unweighted, undirected graph G = (V, E)

edge connectivity $\lambda(G) = \min_{\emptyset \neq S \subset V} |E(S, S^c)|$



cut query $S \subseteq V \mapsto |E(S, S^c)|$? cut query complexity of $\lambda(G)$?

motivated

by submodular function minimization: cut function $S \mapsto |E(S, S^c)|$ is submodular

motivated

by submodular function minimization: cut function $S \mapsto |E(S, S^c)|$ is submodular

connected

to communication complexity, streaming, matrix-vector queries, ...

some former results

some former results

• connectivity:

$O(n\log n)$ classical queries (Harvey '08) $\widetilde{O}(1)$ quantum queries (Lee-Santha-Zhang, SODA'20)

some former results

• connectivity:

$O(n\log n)$ classical queries (Harvey '08) $\widetilde{O}(1)$ quantum queries (Lee-Santha-Zhang, SODA'20)

• edge connectivity:

 $O(n \log^3 n)$ classical queries (Rubinstein-Schramm-Weinberg, ITCS'18) $\widetilde{O}(n)$ classical queries for *weighted* graphs (Mukhopadhyay-Nanongkai, STOC'20)

some former results

• connectivity:

$O(n\log n)$ classical queries (Harvey '08) $\widetilde{O}(1)$ quantum queries (Lee-Santha-Zhang, SODA'20)

• edge connectivity:

 $O(n \log^3 n)$ classical queries (Rubinstein-Schramm-Weinberg, ITCS'18) $\widetilde{O}(n)$ classical queries for *weighted* graphs (Mukhopadhyay-Nanongkai, STOC'20)

our main results

Theorem

some former results

• connectivity:

$O(n\log n)$ classical queries (Harvey '08) $\widetilde{O}(1)$ quantum queries (Lee-Santha-Zhang, SODA'20)

• edge connectivity:

 $O(n \log^3 n)$ classical queries (Rubinstein-Schramm-Weinberg, ITCS'18) $\widetilde{O}(n)$ classical queries for *weighted* graphs (Mukhopadhyay-Nanongkai, STOC'20)

our main results

Theorem

(i) The cut query complexity of (edge) connectivity is O(n).

some former results

• connectivity:

$O(n\log n)$ classical queries (Harvey '08) $\widetilde{O}(1)$ quantum queries (Lee-Santha-Zhang, SODA'20)

• edge connectivity:

 $O(n \log^3 n)$ classical queries (Rubinstein-Schramm-Weinberg, ITCS'18) $\widetilde{O}(n)$ classical queries for *weighted* graphs (Mukhopadhyay-Nanongkai, STOC'20)

our main results

Theorem

(i) The cut query complexity of (edge) connectivity is O(n). (ii) The quantum cut query complexity of edge connectivity is $\widetilde{O}(\sqrt{n})$.

k cut query algorithm implies $O(k \log n)$ communication complexity

k cut query algorithm implies $O(k\log n)$ communication complexity

hence,

O(n) is optimal if communication complexity of connectivity is $\Omega(n \log n)$

k cut query algorithm implies $O(k \log n)$ communication complexity

hence,

O(n) is optimal if communication complexity of connectivity is $\Omega(n \log n)$

which we conjecture, but open since Babai-Frankl-Simon (FOCS'86)

k cut query algorithm implies $O(k \log n)$ communication complexity

hence,

O(n) is optimal if communication complexity of connectivity is $\Omega(n \log n)$

which we conjecture, but open since Babai-Frankl-Simon (FOCS'86)

best known (comm. compl.): $\Omega(n)$ for connectivity (BFS'86) $\Omega(n \log \log n)$ for edge connectivity (Assadi-Dudeja, SOSA'21)

Talk outline

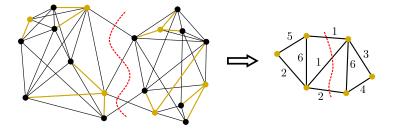
2 Star contraction

- 3 Quantum cut queries
- 4 Classical cut queries
- 5 Open questions

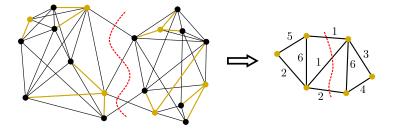
• each vertex becomes center with probability $\widetilde{O}(1/\delta(G))$

- each vertex becomes center with probability $\widetilde{O}(1/\delta(G))$
- each remaining vertex merges with random neighboring center

- each vertex becomes center with probability $\widetilde{O}(1/\delta(G))$
- each remaining vertex merges with random neighboring center



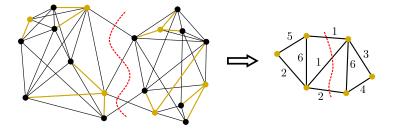
- each vertex becomes center with probability $\widetilde{O}(1/\delta(G))$
- each remaining vertex merges with random neighboring center



w.c.p., contracts to multigraph G' with

 $|V(G')| \in \widetilde{O}(|V(G)|/\delta(G))$ and $\lambda(G') = \lambda(G)$ (if $\lambda(G) < \delta(G)$)

- each vertex becomes center with probability $\widetilde{O}(1/\delta(G))$
- each remaining vertex merges with random neighboring center



w.c.p., contracts to multigraph G' with

 $|V(G')| \in \widetilde{O}(|V(G)|/\delta(G))$ and $\lambda(G') = \lambda(G)$ (if $\lambda(G) < \delta(G)$)

related to "2-out contraction" (Ghaffari-Nowicki-Thorup, SODA'20)

Why does it preserve a minimum cut?

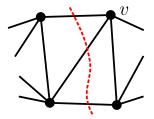
Why does it preserve a minimum cut?

(assume vertices merge with random neighbor)

Why does it preserve a minimum cut?

(assume vertices merge with random neighbor)

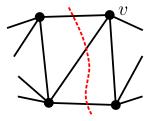
vertex v can have $\leq d(v)/2$ edges across (nontrivial) min cut



Why does it preserve a minimum cut?

(assume vertices merge with random neighbor)

vertex v can have $\leq d(v)/2$ edges across (nontrivial) min cut

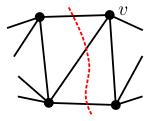


but at most $\delta(G) < d(v)$ edges in min cut

Why does it preserve a minimum cut?

(assume vertices merge with random neighbor)

vertex v can have $\leq d(v)/2$ edges across (nontrivial) min cut



but at most $\delta(G) < d(v)$ edges in min cut

so few vertices with large failure probability

Talk outline

2) Star contraction

4 Classical cut queries

5 Open questions

first studied by Lee-Santha-Zhang (SODA'21) prove big separation with classical cut queries

first studied by Lee-Santha-Zhang (SODA'21) prove big separation with classical cut queries

rough idea: (generalized) cut query

$$|E(X,S)| = \mathbf{1}_X^T A_G \mathbf{1}_S = f_S(X)$$

evaluates linear function f_S

first studied by Lee-Santha-Zhang (SODA'21) prove big separation with classical cut queries

rough idea: (generalized) cut query

$$|E(X,S)| = \mathbf{1}_X^T A_G \mathbf{1}_S = f_S(X)$$

evaluates linear function f_S

\downarrow

using Bernstein-Vazirani, can learn matrix-vector product $A_G 1_S$ using $\widetilde{O}(1)$ quantum cut queries

1st primitive (LSZ'21): learn all neighbors of a vertex with $\widetilde{O}(1)$ quantum queries

1st primitive (LSZ'21): learn all neighbors of a vertex with $\widetilde{O}(1)$ quantum queries \downarrow

deal with high degree case through star contraction

Quantum cut queries

1st primitive (LSZ'21): learn all neighbors of a vertex with $\widetilde{O}(1)$ quantum queries

deal with high degree case through star contraction

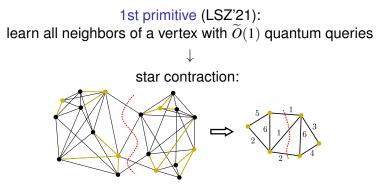
2nd primitive (LSZ'21):

connectivity/spanning tree with $\widetilde{O}(1)$ quantum queries

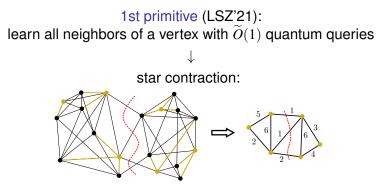
Quantum cut queries

1st primitive (LSZ'21): learn all neighbors of a vertex with $\tilde{O}(1)$ quantum queries deal with high degree case through star contraction 2nd primitive (LSZ'21): connectivity/spanning tree with $\widetilde{O}(1)$ quantum queries deal with low degree case through "tree packing"

1st primitive (LSZ'21): learn all neighbors of a vertex with $\widetilde{O}(1)$ quantum queries

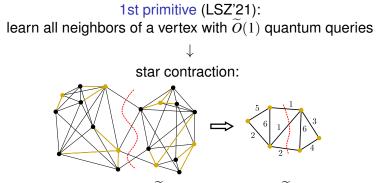


learn neighborhoods of $\widetilde{O}(\sqrt{n})$ centers with $\widetilde{O}(\sqrt{n})$ queries



learn neighborhoods of $\widetilde{O}(\sqrt{n})$ centers with $\widetilde{O}(\sqrt{n})$ queries

returns multigraph with $n/\delta(G) \in \widetilde{O}(\sqrt{n})$ vertices can run *classical* cut query algorithm (MN'20)



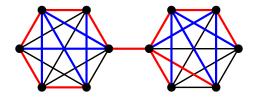
learn neighborhoods of $\widetilde{O}(\sqrt{n})$ centers with $\widetilde{O}(\sqrt{n})$ queries^{*}

returns multigraph with $n/\delta(G) \in O(\sqrt{n})$ vertices can run *classical* cut query algorithm (MN'20)

* unclear for GNT's 2-out contraction

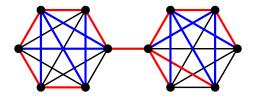
Low degree case ($\delta(G) < \sqrt{n}$)

"pack" spanning trees F_1, F_2, \ldots



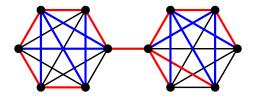
Low degree case ($\delta(G) < \sqrt{n}$)

"pack" spanning trees F_1, F_2, \ldots



from max-flow min-cut theorem: if $k \ge \lambda(G)$ then $\lambda(\cup_{i=1}^{k} F_i) = \lambda(G)$ Low degree case ($\delta(G) < \sqrt{n}$)

"pack" spanning trees F_1, F_2, \ldots



from max-flow min-cut theorem: if $k \ge \lambda(G)$ then $\lambda(\cup_{i=1}^{k} F_i) = \lambda(G)$

algorithm:

pack \sqrt{n} spanning trees = $O(\sqrt{n})$ quantum cut queries compute minimum cut of tree packing = no queries

Talk outline

2 Star contraction

- 3 Quantum cut queries
- 4 Classical cut queries

5 Open questions

Classical cut queries

gist:

Classical cut queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

Classical cut queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

(ii) star contraction with O(n) queries

gist:

(i) connectivity/spanning tree with O(n) classical cut queries

(ii) star contraction with O(n) queries

(iii) returns $O(n/\delta(G))$ vertex graph, pack $\delta(G)$ trees with O(n) queries

Harvey '08: connectivity with $O(n \log n)$ cut queries based on Prim's (sequential) algorithm

Harvey '08: connectivity with O(n log n) cut queries based on Prim's (sequential) algorithm
! uses only 1 out of log n bits of cut query

Harvey '08: connectivity with O(n log n) cut queries based on Prim's (sequential) algorithm
! uses only 1 out of log n bits of cut query

\downarrow

squeeze out more using separating matrix: (Grebinski-Kucherov '98) exists $O(n/\log n) \times n$ boolean matrix *B* such that

 $Bx \neq By, \quad \forall x \neq y \in \{0,1\}^n$

Harvey '08: connectivity with O(n log n) cut queries based on Prim's (sequential) algorithm
! uses only 1 out of log n bits of cut query

\downarrow

squeeze out more using separating matrix: (Grebinski-Kucherov '98) exists $O(n/\log n) \times n$ boolean matrix *B* such that

 $Bx \neq By, \quad \forall x \neq y \in \{0, 1\}^n$

hence, can learn *x* from $Bx (= O(n/\log n)$ queries $y^T x)$

Harvey '08: connectivity with O(n log n) cut queries based on Prim's (sequential) algorithm
! uses only 1 out of log n bits of cut query

Ļ

squeeze out more using separating matrix: (Grebinski-Kucherov '98) exists $O(n/\log n) \times n$ boolean matrix *B* such that

$$Bx \neq By, \quad \forall x \neq y \in \{0, 1\}^n$$

hence, can learn *x* from $Bx (= O(n/\log n)$ queries $y^T x)$

implement Borůvka's (parallel) spanning tree algorithm with $O(n/\log n)$ queries per round

 $O(\log n)$ rounds so O(n) total complexity

Talk outline

2 Star contraction

- 3 Quantum cut queries
- 4 Classical cut queries

Open questions

- exponential quantum separations for *approximate* submodular function minimization?
 - e.g., *approximate* minimum cut with $\tilde{O}(1)$ quantum cut queries?
 - ! can learn approximate min degree with $\widetilde{O}(1)$ quantum cut queries

Open questions

- exponential quantum separations for *approximate* submodular function minimization?
 - e.g., *approximate* minimum cut with $\tilde{O}(1)$ quantum cut queries?
 - ! can learn approximate min degree with $\widetilde{O}(1)$ quantum cut queries
- Lower bounds:
 - ► Ω(*n* log *n*) communication complexity of (edge) connectivity?
 - $\widetilde{\Omega}(\sqrt{n})$ quantum cut query complexity of min degree/cut?

Open questions

- exponential quantum separations for *approximate* submodular function minimization?
 - e.g., *approximate* minimum cut with $\tilde{O}(1)$ quantum cut queries?
 - ! can learn approximate min degree with $\widetilde{O}(1)$ quantum cut queries
- Lower bounds:
 - Ω(n log n) communication complexity of (edge) connectivity?
 - $\widetilde{\Omega}(\sqrt{n})$ quantum cut query complexity of min degree/cut?

Thank you!