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● diffusion
● rumour spreading
● weight balancing

● quantum walks
● ...

under appropriate conditions: dynamics will “mix” (converge, equilibrate)

time scale = “mixing time”
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example: random walk on dumbbell graph

however, diameter = 3
can we do any better ?

not using simple Markov chains:

what if we allow time dependence? memory? quantum dynamics?

e.g. non-backtracking random walks, lifted Markov chains, simulated annealing,
polynomial filters, quantum walks,...
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stochastic process

● Markov chains, time-averaged MCs, time-inhomogeneous invariant MCs
● lifted MCs, non-backtracking RWs on regular graphs
● imprecise Markov chains, sets of doubly-stochastic matrices
● quantum walks and quantum Markov chains

examples of linear, local and invariant stochastic processes:
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stochastic process

main theorem:

any linear, local and invariant stochastic process has a mixing time

on dumbell graph: 
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main theorem:

any linear, local and invariant stochastic process has a mixing time

proof:

1) we build a Markov chain simulator

2) we prove the theorem for Markov chain simulator
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if stochastic process is linear and local, then this transition rule simulates the process:
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second trick:
if process is invariant, then we can “amplify”

= restart the simulation every time timer reaches T

simulates up to time T

1) Markov chain simulator of linear, local and invariant stochastic process:

proposition:
the (asymptotic) mixing time of this amplified simulator closely relates to

the (asymptotic) mixing time of the original process
15
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main theorem:

any linear, local and invariant stochastic process has a mixing time

example 2: binary tree

any linear, local and invariant stochastic process on the binary tree
has the same mixing time as a random walk
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main theorem:

any linear, local and invariant stochastic process has a mixing time

example 3: finite time convergence

what is the least number of local, symmetric stochastic matrices whose product has rank one?

= mixing time of time-inhomogeneous symmetric Markov chain
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main theorem:

any linear, local and invariant stochastic process has a mixing time

example 4: quantum walks

first bound for the mixing time of general quantum Markov chains

see details in [arXiv:1712.01609]
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main theorem:

any linear, local and invariant stochastic process has a mixing time

observation 1: bound is “tight”

21



main theorem:

any linear, local and invariant stochastic process has a mixing time

observation 1: bound is “tight”

there exists a linear, local and invariant stochastic process that has a mixing time

21

see Chen, Lovász and Pak (STOC’99)
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main theorem:

any linear, local and invariant stochastic process has a mixing time

observation 2: invariance condition is necessary

see Pavon and Ticozzi,
Journal of Math.Ph. (‘10):

there exists a linear and local process that has the trivial mixing time
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main theorem:

any linear, local and invariant stochastic process has a mixing time

some open questions:
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● stronger locality form, assuming e.g. symmetry:

● closed form for

● relaxation of invariance condition ?
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