(No) Quantum space-time tradeoff for undirected STCON

arXiv: 2212.00094

The problem

 \frown

Let
$$(e = (X_i E))$$
 be a simple undirected graph,
 $|X| = n$
Let $s_i t \in X$ be two vertices

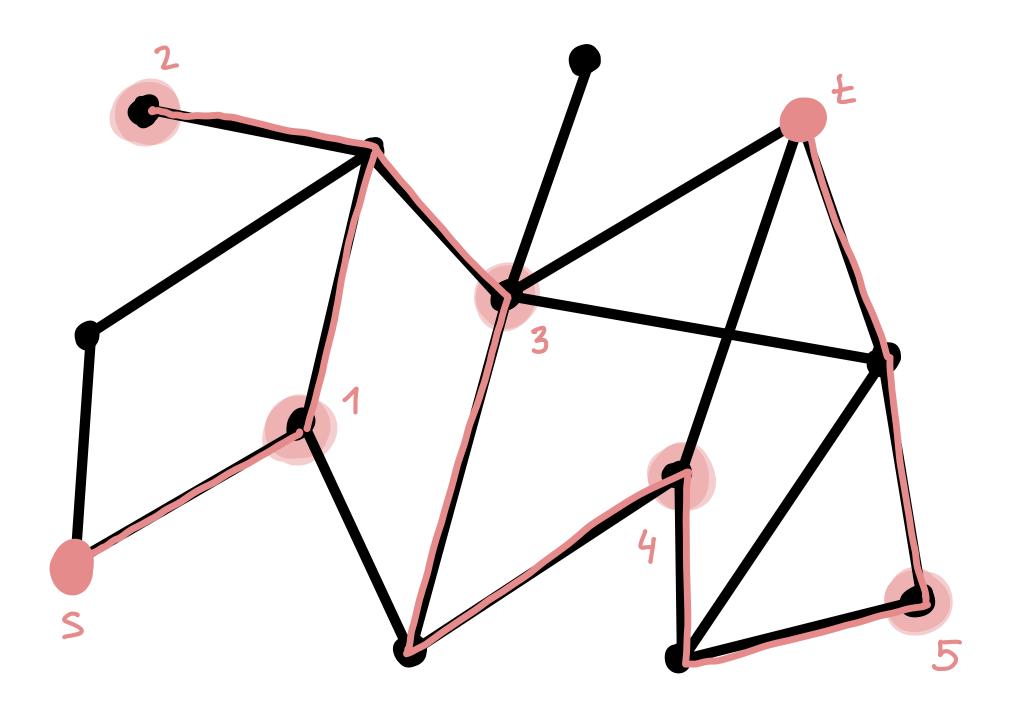
Outline

· Classical approach with trade-offs

- Quantum model and context
- Quantum walk search
 Metropolis Hastings walks
- · Optimal quantum algorithm for st-connectivity
- Matching Rower bound
- Quantum algorithm with a trade-off

Classical approach (éval: algorithms that give time-space trade-offs Examples • Ö(n) space => can remember all vertices => can perform BFS or DFS 5 Const • O(1) space => can only remember one vertex => Only see the graph locally => can only do a random walk.

Assume that there is
$$\tilde{O}(p)$$
 available space
Approach (Broder et al. '94, Feige' 95, Kosowski '12) P vertices
(1) Sample p peobles, s,t are also peobles
(2) Run O(logn) short Metropolis-Hastings walks
from each peoble $\frac{n^2}{p^2}$ is a modification
of the graph (union,
find)
if hit a peoble, memorize this connection
• Check in the end if s&t are connected
Complexity: $T = \tilde{O}(p \cdot \frac{n^2}{p^2}) = \tilde{O}(\frac{n^2}{p})$ $S \in \frac{n^2}{m}$
Trade-off: $T \cdot S = \tilde{O}(n^2)$



Outline

- Classical approach with trade-offs
- Quantum model and context
- Quantum walk search
- Metropolis Hastings walks
- Optimal quantum algorithm for st-connectivity
- Matching Rower bound
- Quantum algorithm with a trade-off

USTCON _{mat}			
	Time	TS-tradeoffs	
Classical	$\widetilde{\Theta}(n^2)$	$S = O(\log(n)), T = \widetilde{O}(n^3/d)$	- From USTCONARR
		$S = \widetilde{O}(n), T = \widetilde{O}(n^2)$	BFS
Quantum	$\widetilde{\Theta}(n^{1.5})$	$S = O(\log(n)), T = \widetilde{O}(n^{1.5})$	[BR'12]
USTCONarr			
	Time	TS-tradeoffs	
Classical	$\widetilde{\Theta}(m)$	$T = \widetilde{O}(\max\{n^2/S, m\}) \qquad \Leftarrow$	Kosowski'l2
Quantum	$\widetilde{\Theta}(n)$	$S = O(\log(n)), T = \widetilde{O}(n^{1.5}) \Leftarrow$	quantum walk
		$S=T=\widetilde{O}(n)$ \leftarrow	[DHHM'06]
		This work: $S = O(\log(n)), T = \widetilde{O}(n)$	adopted algorithm for CONNECTIVITY

Model

 $\mathbf{\Lambda}$

Adjacency array: Fixed ordering on neighbours
 ① Degree query 10>10> → 10>1du>, u ∈ X
 ② Neighbour query 10>10> → 10>10>10> (u)
 0> → 10>10>10>10>10
 000 and 00

Quantum walk version: Span(X) @ span(X), unitary map

$$|u>|0> \mapsto \frac{1}{\sqrt{d_u}} \leq |u>|v>$$

Quantum version of sampling a neighbour (uniformly)

> assumption on neighbours ordering

- Classical approach with trade-offs \checkmark
- Quantum model and context
- · Quantum walk search
- Metropolis Hastings walks
- Optimal quantum algorithm for st-connectivity
- Matching Rower bound
- Quantum algorithm with a trade-off

Random walks: naive search algorithm • $\omega: E \longrightarrow \mathbb{R}_+$ weights on edges YueX: move to veX with probability $P_{uv} = \frac{\omega_{uv}}{\sum \omega_{ux}}$ XEN(u) • M = X set of marked vertices Goal: find a vertex from M (1) Setup a vertex (e.g. sample from a distribution) (2) Update the vertex according to w Repeat (3) theck if the new vertex is marked depends on M Complexity: S + HT(U+C) / & where we start F (# of walk steps needed to hit M)

Quantum version

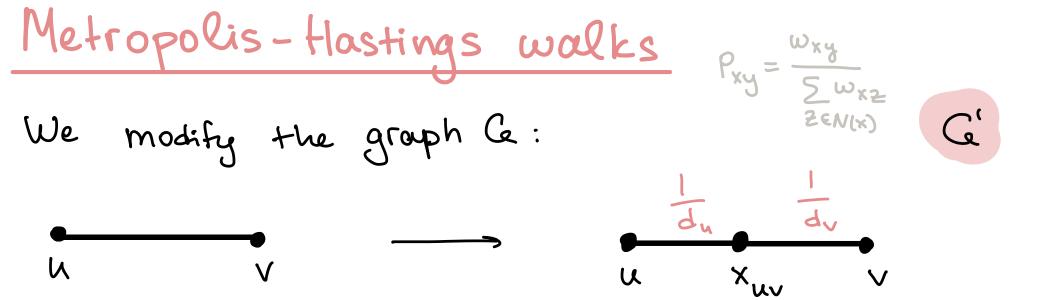
• Let MCX be a set of Marked vertices

• Let s be starting vertex,
$$6 = \delta_s$$
, $167 = 157$

Thm

There is a quantum algorithm that finds a marked vertex with constant probability in Complexity $S + \sqrt{C_{s,M}} (U + C)$ up to log factors Setup / update check E (# steps needed to hit M starting from s and go back to u)

- Classical approach with trade-offs \checkmark
- Quantum model and context
- Quantum walk search
- Metropolis Hastings walks
- Optimal quantum algorithm for st-connectivity
- Matching Rower bound
- Quantum algorithm with a trade-off



A walk on G' visits vertices of G on every second step => can simulate a walk on G
 With a factor of 2

Important property: hitting time is O(n²) Kosowski'l
 max E(# steps to hit v starting from u)
 veG

- Classical approach with trade-offs \checkmark
- Ruantum model and context
- Quantum walk search
- Metropolis Hastings walks
- · Optimal quantum algorithm for st-connectivity
- Matching Rower bound
- Quantum algorithm with a trade-off

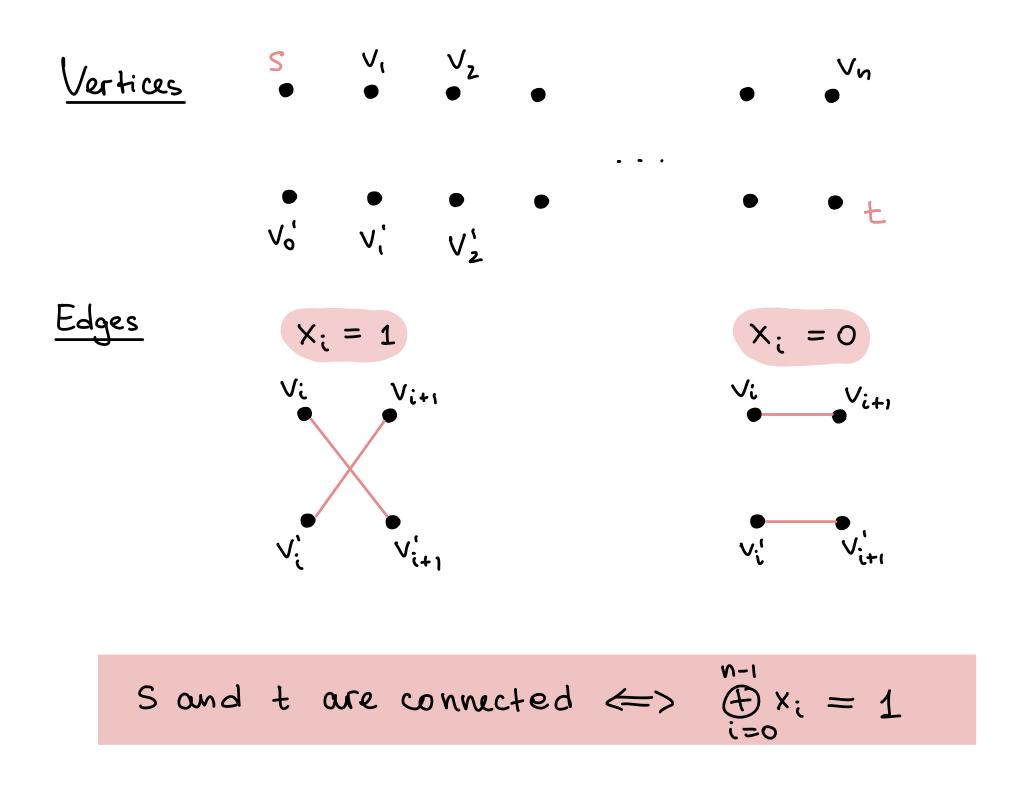
Single walk quantum algorithm
• Let
$$6 = \delta_s$$
, $16 > = 15 >$, $M = \{12\}$
• Run the quantum walk search algorithm with the
Metropolis - Hastings modification
 $Iuput model :$
 $Metropolis - Hastings$
 $C_{s,t} = H_{st} + H_{ts} \in O(n^2)$
 $Markov property$
 $Complexity : T = \tilde{O}(S + \sqrt{n^2}(U+C)) = \tilde{O}(S + n(U+C))$
 $S = O(\log n)$ optimal
 $Net do argue$

Metropolis-Hastings walk Quantum implementation Usual quantum walk assumption W: IU>IO> > 1 Vdu VEN(w) YueX + degree queries: OD: 10>142>142>142 Need to implement: (Szegedy quantum walk operator) U: IX>IO> >>> Z IPxy IX>IY> Y × E X' yeN(x) P = wxy • For vertices of G nothing changes $P_{xy} = \frac{\omega_{xy}}{\sum \omega_{xz}}$ For x_{uv} rotate an auxiliary qubit controlled on degrees h ٧

- Classical approach with trade-offs \checkmark
- Ruantum model and context
- Quantum walk search
- Metropolis Hastings walks
- Optimal quantum algorithm for st-connectivity \checkmark
- Matching Rower bound
- Quantum algorithm with a trade-off

Lower bound : Parity -> st-connectivity reduction

BBC+ '01, FGGS '98



- Classical approach with trade-offs \checkmark
- Ruantum model and context
- Quantum walk search
- Metropolis Hastings walks
- Optimal quantum algorithm for st-connectivity \checkmark
- Matching Rower bound V
- · Quantum algorithm with a trade-off

About quantum trade-offs

• Hesumption: Spectral gap
$$\ge 8$$

time needed to sample
 \Rightarrow mixing time $\in \widetilde{O}(\frac{1}{5})$ from stationary
distribution

