QUANTUM SPEEDUPS FOR LPS VIA IPMS

Simon Apers (CNRS & IRIF, Paris)

with Sander Gribling (Tilburg University)

arXiv:2311.03215

QIP, Taipei (Taiwan), January '24

LPs and IPMs Approximate Hessian Approximate gradient Quantum LP solver

1

LPs and IPMs

Approximate Hessian

Approximate gradient

Quantum LP solver

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \ge b \end{array}$

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \ge b \end{array}$

d dimensions $\ll n$ constraints ($x \in \mathbb{R}^d$, $A \in \mathbb{R}^{n \times d}$)

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \ge b \end{array}$

d dimensions $\ll n$ constraints ($x \in \mathbb{R}^d$, $A \in \mathbb{R}^{n \times d}$)

= (constrained) convex optimization

barrier *f*: $f(x) \to \infty$ when $a_i^T x \to b_i$

barrier *f*: $f(x) \to \infty$ when $a_i^T x \to b_i$

barrier *f*: $f(x) \to \infty$ when $a_i^T x \to b_i$

e.g., logarithmic barrier: $f(x) = -\sum_i \log(a_i^T x - b_i)$

barrier *f*: $f(x) \to \infty$ when $a_i^T x \to b_i$

e.g., logarithmic barrier:
$$f(x) = -\sum_{i} \log(a_i^T x - b_i)$$

 $\min_x f(x) + c^T x$

barrier *f*: $f(x) \to \infty$ when $a_i^T x \to b_i$

e.g., logarithmic barrier:
$$f(x) = -\sum_{i} \log(a_{i}^{T}x - b_{i})$$

 $\min_{x} f(x) + c^{T}x$

= unconstrained convex optimization

 $f_{\eta}(x) = f(x) + \eta \cdot c^{T} x$

$$f_{\eta}(x) = f(x) + \eta \cdot c^{T} x$$

central path
$$\{z_{\eta} = \operatorname{argmin}_{x} f_{\eta}(x)\}_{\eta \geq 0}$$

1. increase η :

$$\eta' = (1+\gamma)\eta$$

1. increase η :

$$\eta' = (1+\gamma)\eta$$

2. Newton step:

$$x' = x - H(x)^{-1}g(x)$$

(Hessian $H(x) = \nabla^2 f_{\eta}(x)$, gradient $g(x) = \nabla f_{\eta}(x)$)

e.g., logarithmic barrier:

$$f(x) = -\sum_{i} \log(\underbrace{a_i^T x - b_i}_{\text{slack } s_i})$$

e.g., logarithmic barrier:

$$f(x) = -\sum_{i} \log(\underbrace{a_i^T x - b_i}_{\text{slack } s_i})$$

Hessian

$$H(x) = \sum_{i} \frac{1}{s_i^2} a_i a_i^T = B^T B$$
$$(B^T)_{\cdot i} = \frac{1}{s_i} a_i$$

e.g., logarithmic barrier:

$$f(x) = -\sum_{i} \log(\underbrace{a_{i}^{T} x - b_{i}}_{\text{slack } s_{i}})$$

Hessian

$$H(x) = \sum_{i} \frac{1}{s_i^2} a_i a_i^T = B^T B$$
$$(B^T)_{\cdot i} = \frac{1}{s_i} a_i$$

gradient

$$g(x) = -B^T \vec{1}$$

number of steps

 \sim number of increases η

number of steps

number of steps

= computation (inverse) Hessian and gradient of barrier

number of steps

computation (inverse) Hessian and gradient of barrier
 logarithmic: matrix inversion
 volumetric: matrix inversion + leverage scores
 Lewis weight: matrix inversion + Lewis weights

SOTA (classical)

SOTA (classical)

runtime $\frac{nd + d^3}{d}$ (GOAT for $n \gg d$: linear in input size)

SOTA (classical)

runtime $\frac{nd + d^3}{nd}$ (GOAT for $n \gg d$: linear in input size)

IPM + clever use of dynamic data structures

Prior work (quantum)

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

Prior work (quantum)

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

A Quantum Interior Point Method for LPs and SDPs* '18 IORDANIS KERENIDIS and ANUPAM PRAKASH, CNRS, IRIF, Université Paris Diderot

quantum linear system solving + tomography

* and follow-up works: [Augustino-Nannicini-Terlaky-Zuluaga '21,'23], [Huang-Jiang-Song-Tao-Zhang '22], [Dalzell-Clader-Salton-Berta-Lin-Bader-Stamatopoulos-Schuetz-Brandão-Katzgraber-Zeng '22], ...

** non-IPM: multiplicative weights [Brandão-Svore '17], [van Apeldoorn-Gilyén-Gribling-de Wolf-Brandão-Kalev-Li-Lin-Svore-Wu '17], simplex method [Nannicini '19], ...

Prior work (quantum)

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

A Quantum Interior Point Method for LPs and SDPs* '18 IORDANIS KERENIDIS and ANUPAM PRAKASH, CNRS, IRIF, Université Paris Diderot

quantum linear system solving + tomography

! dependence on condition number $\kappa(H)$ ($\rightarrow \infty$ as $x \rightarrow \text{OPT}$)

* and follow-up works: [Augustino-Nannicini-Terlaky-Zuluaga '21,'23], [Huang-Jiang-Song-Tao-Zhang '22], [Dalzell-Clader-Salton-Berta-Lin-Bader-Stamatopoulos-Schuetz-Brandão-Katzgraber-Zeng '22], ...

** non-IPM: multiplicative weights [Brandão-Svore '17], [van Apeldoorn-Gilyén-Gribling-de Wolf-Brandão-Kalev-Li-Lin-Svore-Wu '17], simplex method [Nannicini '19], ...

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

(i) approximate Hessian H' ≈ H
(ii) approximate gradient g' ≈ g
(using H' as preconditioner)

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

(i) approximate Hessian H' ≈ H
(ii) approximate gradient g' ≈ g
(using H' as preconditioner)

runtime $\sqrt{n} \cdot \text{poly}(d) \cdot \log(1/\varepsilon)$ (no condition number, sublinear for $n \gg d$)

quantum speedup for **Newton step** $x' = x - H(x)^{-1}g(x)$

(i) approximate Hessian H' ≈ H
(ii) approximate gradient g' ≈ g
(using H' as preconditioner)

runtime $\sqrt{n} \cdot \text{poly}(d) \cdot \log(1/\varepsilon)$ (no condition number, sublinear for $n \gg d$)

GOAT: $\Omega(\sqrt{nd})$ row queries

LPs and IPMs Approximate Hessian Approximate gradient

Quantum LP solver

via constraint sampling

approximate Newton step

$$x' = x - \widetilde{H}^{-1}g$$

needs spectral approximation

approximate Newton step

$$x' = x - \widetilde{H}^{-1}g$$

needs spectral approximation

*
$$H \approx \tilde{H} \quad \Leftrightarrow \quad \forall y: \ y^T H y = (1 \pm 0.1) y^T \tilde{H} y \quad \Leftrightarrow \quad 0.9 \tilde{H} \preceq H \preceq 1.1 \tilde{H}$$

sampling via "statistical leverage scores"

$$\sigma_i = a_i^T (A^T A)^{-1} a_i$$

sampling via "statistical leverage scores"

$$\sigma_i = a_i^T (A^T A)^{-1} a_i$$

! chicken-and-egg

sampling via "statistical leverage scores"

$$\sigma_i = a_i^T (A^T A)^{-1} a_i$$

! chicken-and-egg

USe uniform subsampling + bootstrapping scheme [Cohen-Lee-Musco-Musco-Peng-Sidford '14]

sampling via "statistical leverage scores"

$$\sigma_i = a_i^T (A^T A)^{-1} a_i$$

! chicken-and-egg

use uniform subsampling + bootstrapping scheme

[Cohen-Lee-Musco-Musco-Peng-Sidford '14]

+ Grover search

quantum algorithm:

 $-\operatorname{returns} \widetilde{A}$ with $\widetilde{O}(d)$ rows, \widetilde{A} spectral approximation of A

- makes $\widetilde{O}(\sqrt{nd})$ row queries

quantum algorithm:

 $- \operatorname{returns} \widetilde{A} \operatorname{with} \widetilde{O}(d) \operatorname{rows},$ $\widetilde{A} \operatorname{spectral} \operatorname{approximation} \operatorname{of} A$ $- \operatorname{makes} \widetilde{O}(\sqrt{nd}) \operatorname{row} \operatorname{queries}$

- generalizes graph sparsification

[Apers-de Wolf '19]

quantum algorithm:

 $-\operatorname{returns} \widetilde{A}$ with $\widetilde{O}(d)$ rows, \widetilde{A} spectral approximation of A $-\operatorname{makes} \widetilde{O}(\sqrt{nd})$ row queries

- generalizes graph sparsification

[Apers-de Wolf '19]

applications in regression

[Submitted on 24 Nov 2023]

Revisiting Quantum Algorithms for Linear Regressions: Quadratic Speedups without Data-Dependent Parameters

Zhao Song, Junze Yin, Ruizhe Zhang

quantum algorithm:

- returns \widetilde{A} with $\widetilde{O}(d)$ rows, \widetilde{A} spectral approximation of A- makes $\widetilde{O}(\sqrt{nd})$ row queries

- generalizes graph sparsification

[Apers-de Wolf '19]

applications in regression

[Submitted on 24 Nov 2023]

Revisiting Quantum Algorithms for Linear Regressions: Quadratic Speedups without Data-Dependent Parameters

Zhao Song, Junze Yin, Ruizhe Zhang

- IPMs: need additional work

(e.g., Lee-Sidford barrier uses "Lewis weights")

LPs and IPMs Approximate Hessian Approximate gradient Quantum LP solver **Approximate gradient**

typical gradient:

$$q = \left[\begin{array}{c} A^{\tau} \\ A^{\tau} \end{array} \right] \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] = n \cdot \underset{i}{\mathbb{E}} \left[\begin{array}{c} A^{\tau} \\ 1 \\ 1 \end{array} \right]$$

Approximate gradient

typical gradient:

 \rightarrow quantum multivariate mean estimation:

[Cornelissen-Hamoudi-Jerbi '22]

Approximate gradient

typical gradient:

 \rightarrow quantum multivariate mean estimation:

[Cornelissen-Hamoudi-Jerbi '22]

approximate $g = \mathbb{E}[X]$ with sample complexity

 $\sqrt{d\operatorname{Tr}(\Sigma_X)}$

gradient
$$g = \mathbb{E}[X] = \mathbb{E}_i[n a_i]$$

covariance matrix $\Sigma_X \preceq \mathbb{E}[XX^T] = nA^TA$ $\} \Rightarrow \sqrt{dn \operatorname{Tr}(A^TA)}$ samples

gradient
$$g = \mathbb{E}[X] = \mathbb{E}_i[n a_i]$$

covariance matrix $\Sigma_X \preceq \mathbb{E}[XX^T] = nA^TA$ $\Rightarrow \sqrt{dn \operatorname{Tr}(A^TA)}$ samples

! $Tr(A^T A)$ introduces condition number :(

gradient $g = \mathbb{E}[X] = \mathbb{E}_i[n a_i]$ covariance matrix $\Sigma_X \preceq \mathbb{E}[XX^T] = nA^TA$ $\Rightarrow \sqrt{dn \operatorname{Tr}(A^TA)}$ samples

! $Tr(A^T A)$ introduces condition number :(

 \downarrow

precondition with spectral approximation:

 $Y = (\widetilde{A}^T \widetilde{A})^{-1/2} X$

gradient
$$g = \mathbb{E}[X] = \mathbb{E}_i[n a_i]$$

covariance matrix $\Sigma_X \preceq \mathbb{E}[XX^T] = nA^TA$ $\Rightarrow \sqrt{dn \operatorname{Tr}(A^TA)}$ samples

! $Tr(A^T A)$ introduces condition number :(

\downarrow

precondition with spectral approximation:

$$Y = (\widetilde{A}^T \widetilde{A})^{-1/2} X$$

s.t.

 $g = (\widetilde{A}^T \widetilde{A})^{1/2} \cdot \mathbb{E}[Y]$ and $\Sigma_Y \preceq 1.1 \, n \, I_d$

gradient
$$g = \mathbb{E}[X] = \mathbb{E}_i[n a_i]$$

covariance matrix $\Sigma_X \preceq \mathbb{E}[XX^T] = nA^TA$ $\} \Rightarrow \sqrt{dn \operatorname{Tr}(A^TA)}$ samples

! $Tr(A^TA)$ introduces condition number :(

\downarrow

precondition with spectral approximation:

$$Y = (\widetilde{A}^T \widetilde{A})^{-1/2} X$$

s.t.

 $g = (\widetilde{A}^T \widetilde{A})^{1/2} \cdot \mathbb{E}[Y]$ and $\Sigma_Y \preceq 1.1 \, n \, I_d$ $\Rightarrow O(d\sqrt{n})$ samples LPs and IPMs Approximate Hessian Approximate gradient

Quantum LP solver

Quantum LP solver

explicitly returns \tilde{x} satisfying

$$c^{T}\tilde{x} \leq c^{T} \operatorname{OPT} + \varepsilon$$

and $A\tilde{x} \leq b$

Quantum LP solver

explicitly returns \tilde{x} satisfying

$$c^{T}\tilde{x} \leq c^{T} \operatorname{OPT} + \varepsilon$$

and $A\tilde{x} \leq b$

row queries*:

 $(\# \text{ steps}) \times (\# \text{ cost Newton step})$ = $\sqrt{d} \log(1/\varepsilon) \times \sqrt{n} d^{2.5} \in \widetilde{O}(\sqrt{n} d^3)$

time complexity: $\sqrt{n} \log(1/\varepsilon) \operatorname{poly}(d)$

* using Lewis weight barrier.

log-barrier: $\sqrt{n}\log(1/\varepsilon) \times \sqrt{n}d$, volumetric barrier: $(nd)^{1/4}\log(1/\varepsilon) \times \sqrt{n}d^2$

quantum IPM for solving LPs (without condition numbers)

 quantum IPM for solving LPs (without condition numbers)

- runtime ($n \gg d$)

 $\sqrt{n} \cdot \operatorname{poly}(d) \cdot \log(1/\varepsilon)$

versus $n \cdot d \cdot \log(1/\varepsilon)$ classical

 quantum IPM for solving LPs (without condition numbers)

- runtime ($n \gg d$)

 $\sqrt{n} \cdot \operatorname{poly}(d) \cdot \log(1/\varepsilon)$

versus $n \cdot d \cdot \log(1/\varepsilon)$ classical

– new tools

spectral approximation (Grover) approximate matrix-vector (mean estimation)

 quantum IPM for solving LPs (without condition numbers)

- runtime ($n \gg d$)

 $\sqrt{n} \cdot \operatorname{poly}(d) \cdot \log(1/\varepsilon)$

versus $n \cdot d \cdot \log(1/\varepsilon)$ classical

– new tools

spectral approximation (Grover) approximate matrix-vector (mean estimation)

- main open question be the GOAT: match $\Omega(\sqrt{nd})$ row queries LB

 quantum IPM for solving LPs (without condition numbers)

- runtime ($n \gg d$)

 $\sqrt{n} \cdot \operatorname{poly}(d) \cdot \log(1/\varepsilon)$

versus $n \cdot d \cdot \log(1/\varepsilon)$ classical

– new tools

spectral approximation (Grover) approximate matrix-vector (mean estimation)

- main open question be the GOAT: match $\Omega(\sqrt{nd})$ row queries LB

- thanks!

Extra slide: cutting plane & lower bound

– separation query: given *x*, return violated constraint (if any)

 fastest cutting plane method [Lee-Sidford-Wong '15]: solve LP with d separation queries

- using Grover: answer separation query with \sqrt{n} row queries solve LP with $d \cdot \sqrt{n}$ row queries

- quantum lower bound: $\sqrt{d \cdot n}$ row queries