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CONVEX FUNCTIONS AND CONDITION NUMBER

function f : Rd → R

α-strongly convex, β-smooth:
αI ⪯ ∇2f ⪯ βI

condition number κ = β
α

first order query access:
f (x) and ∇f (x)
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CONVEX OPTIMIZATION

find ε-approximation to optimum x∗ = minx f (x)

gradient descent: x′ = x − η∇f (x)

requires O(κ log(1/ε)) queries

! Nesterov acceleration: O(
√
κ log(1/ε)) queries
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LOGCONCAVE SAMPLING

sample ε-close to π(x) ∝ e−f (x) (in TV distance)
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LOGCONCAVE SAMPLING

Langevin algorithm:

x′ = x + η∇f (x) + ζ, ζ ∼ N (0, ηI)

+ Metropolis-Hastings correction

Langevin requires O(κ log(1/ε)) steps
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LOGCONCAVE SAMPLING

κ-scaling even from “warm start” (e.g., x0 = x∗)

slowdown caused by diffusion

step length ∼ 1/
√
β

t steps distance ∼
√

t/
√
β

∼ 1/
√
α requires t ∼ β/α = κ

improve to
√
κ?
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QUANTUM SPEEDUP

quantum walks show
“ballistic” wave-like behavior

quantum walk based on
Langevin algorithm
(+ simulated annealing)

requires O(
√
κ log(1/ε)) queries
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CLASSICAL SPEEDUP

for Gaussians:
“Hamiltonian Monte Carlo” algorithm

requires O(
√
κ log(1/ε)) queries

conjecture:
O(

√
κ log(1/ε)) queries for all logconcave distributions
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HAMILTONIAN MONTE CARLO

H(x, v, t) for x, v ∈ Rd, t ∈ R
= position after Hamiltonian dynamics

for time t, from (x, v), with potential energy f (x)

HMC step: from x ∈ Rd do
1 pick random time t ∼ 1/

√
α and velocity v ∼ N (0, Id)

2 set x′ = H(x, v, t)
3 Metropolis-Hastings correction
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HAMILTONIAN MONTE CARLO

Hamiltonian dynamics yield “ballistic” motion

(left: HMC, right: Langevin)

= source of κ→
√
κ speedup
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HAMILTONIAN INTEGRATION

? how to compute H(x, v, t) ?

→ leapfrog integrator:
vt+δ/2 = vt −

δ

2
∇f (xt)

xt+δ = xt + δvt+δ/2

vt+δ = vt+δ/2 −
δ

2
∇f (xt+δ)

= symplectic, second-order integrator

bounded error for step size δ ∈ O
(

1√
βd1/4

)
integration time t ∈ O(1/

√
α)

requires t/δ ∈ O(
√
κd1/4) gradient queries
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HMC COMPARISON

Langevin:
O(κ

√
d log(1/ε))

quantum walk:
O(

√
κd log(1/ε))

O(
√
κd1/4 log(1/ε)) (with warm start)

HMC:
O(

√
κd1/4 log(1/ε)) (for Gaussians)

! compare with “dimension-free” scaling of O(
√
κ) for optimization
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OPEN QUESTIONS

√
κ-scaling for general logconcave?

dimension-free scaling for Gaussian / general logconcave?
(e.g., use higher-order integrators)

classical and quantum speedups in non-continuous setting?
! MCMC often in discrete graph setting
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EXTRA: SCHRÖDINGER DYNAMICS

? replace Hamiltonian dynamics by Schrödinger dynamics ?

∂
∂tψ(t) = −iĤψ(t)

e.g., can use “quantum tunneling” for nonconvex optimization
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THANK YOU!

figure references:
https://www.pokutta.com/blog/research/2018/12/06/cheatsheet-smooth-idealized.html

https://link.springer.com/article/10.1007/s11222-012-9373-1
https://www.cs.ubc.ca/ schmidtm/Courses/540-W19/L4.pdf

https://www.sciencedirect.com/science/article/abs/pii/S0167473017300693
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