CLASSICAL & QUANTUM ALGORITHMS FOR LOGCONCAVE SAMPLING

EUROPT, Budapest, August '23

LOGCONCAVE SAMPLING QUANTUM AND CLASSICAL SPEEDUP FUTURE DIRECTIONS

QUANTUM AND CLASSICAL SPEEDUP

FUTURE DIRECTIONS

function $f : \mathbb{R}^d \to \mathbb{R}$

function $f : \mathbb{R}^d \to \mathbb{R}$

 α -strongly convex, β -smooth: $\alpha I \preceq \nabla^2 f \preceq \beta I$

function $f : \mathbb{R}^d \to \mathbb{R}$

 α -strongly convex, β -smooth: $\alpha I \preceq \nabla^2 f \preceq \beta I$

condition number
$$\kappa = \frac{\beta}{\alpha}$$

function $f : \mathbb{R}^d \to \mathbb{R}$

 α -strongly convex, β -smooth: $\alpha I \preceq \nabla^2 f \preceq \beta I$

condition number $\kappa = \frac{\beta}{\alpha}$

first order query access: f(x) and $\nabla f(x)$

find ε -approximation to optimum $x^* = \min_x f(x)$

find ε -approximation to optimum $x^* = \min_x f(x)$

gradient descent: $x' = x - \eta \nabla f(x)$

find ε -approximation to optimum $x^* = \min_x f(x)$

gradient descent: $x' = x - \eta \nabla f(x)$

requires $O(\kappa \log(1/\varepsilon))$ queries

find ε -approximation to optimum $x^* = \min_x f(x)$

gradient descent: $x' = x - \eta \nabla f(x)$

requires $O(\kappa \log(1/\varepsilon))$ queries

! Nesterov acceleration: $O(\sqrt{\kappa} \log(1/\varepsilon))$ queries

sample ε -close to $\pi(x) \propto e^{-f(x)}$ (in TV distance)

sample ε -close to $\pi(x) \propto e^{-f(x)}$ (in TV distance)

Langevin algorithm:

$$x' = x + \eta \nabla f(x) + \zeta, \quad \zeta \sim \mathcal{N}(0, \eta I)$$

Langevin algorithm:

$$x' = x + \eta \nabla f(x) + \zeta, \quad \zeta \sim \mathcal{N}(0, \eta I)$$

+ Metropolis-Hastings correction

Langevin algorithm:

$$x' = x + \eta \nabla f(x) + \zeta, \quad \zeta \sim \mathcal{N}(0, \eta I)$$

+ Metropolis-Hastings correction

Faster high-accuracy log-concave sampling via algorithmic warm starts

Jason M. Altschuler NYU ja4775@nyu.edu

Sinho Chewi MIT schewi@mit.edu

February 22, 2023

Langevin requires $O(\kappa \log(1/\varepsilon))$ steps

 κ -scaling even from "warm start" (e.g., $x_0 = x^*$)

 κ -scaling even from "warm start" (e.g., $x_0 = x^*$)

slowdown caused by diffusion

 κ -scaling even from "warm start" (e.g., $x_0 = x^*$)

slowdown caused by diffusion

step length $\sim 1/\sqrt{\beta}$

 κ -scaling even from "warm start" (e.g., $x_0 = x^*$)

 κ -scaling even from "warm start" (e.g., $x_0 = x^*$)

LOGCONCAVE SAMPLING QUANTUM AND CLASSICAL SPEEDUP FUTURE DIRECTIONS

QUANTUM SPEEDUP

Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Authors

Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, Ruizhe Zhang

QUANTUM SPEEDUP

Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Authors

Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, Ruizhe Zhang

quantum walks show "ballistic" wave-like behavior

QUANTUM SPEEDUP

Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Authors

Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, Ruizhe Zhang

quantum walks show "ballistic" wave-like behavior

quantum walk based on Langevin algorithm (+ simulated annealing) requires $O(\sqrt{\kappa} \log(1/\varepsilon))$ queries

CLASSICAL SPEEDUP

Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps '22

Simon Apers^{*}

Sander Gribling^{*}

Dániel Szilágyi*

CLASSICAL SPEEDUP

Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps '22

Simon Apers^{*} Sander Gribling^{*} Dániel Szilágyi^{*}

for Gaussians:

"Hamiltonian Monte Carlo" algorithm requires $O(\sqrt{\kappa} \log(1/\varepsilon))$ queries

CLASSICAL SPEEDUP

Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps '22

Simon Apers^{*} Sander Gribling^{*} Dániel Szilágyi^{*}

for Gaussians:

"Hamiltonian Monte Carlo" algorithm requires $O(\sqrt{\kappa}\log(1/\varepsilon))$ queries

conjecture:

 $O(\sqrt{\kappa}\log(1/\varepsilon))$ queries for *all* logconcave distributions

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$ = position after Hamiltonian dynamics for time *t*, from (x, v), with potential energy f(x)

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$ = position after Hamiltonian dynamics for time *t*, from (x, v), with potential energy f(x)

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$ = position after Hamiltonian dynamics for time *t*, from (x, v), with potential energy f(x)

HMC step: from $x \in \mathbb{R}^d$ do

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$ = position after Hamiltonian dynamics for time *t*, from (x, v), with potential energy f(x)

HMC step: from $x \in \mathbb{R}^d$ do

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$ = position after Hamiltonian dynamics for time *t*, from (x, v), with potential energy f(x)

HMC step: from $x \in \mathbb{R}^d$ do

pick random time t ~ 1/√α and velocity v ~ N(0, I_d)
set x' = H(x, v, t)

H(x, v, t) for $x, v \in \mathbb{R}^d$, $t \in \mathbb{R}$ = position after Hamiltonian dynamics for time *t*, from (x, v), with potential energy f(x)

HMC step: from $x \in \mathbb{R}^d$ do

() pick random time $t \sim 1/\sqrt{\alpha}$ and velocity $v \sim \mathcal{N}(0, I_d)$

2 set
$$x' = H(x, v, t)$$

Metropolis-Hastings correction

Hamiltonian dynamics yield "ballistic" motion

Hamiltonian dynamics yield "ballistic" motion

? how to compute H(x, v, t) ?

? how to compute H(x, v, t) ?

 \rightarrow leapfrog integrator:

$$v_{t+\delta/2} = v_t - \frac{\delta}{2} \nabla f(x_t)$$
$$x_{t+\delta} = x_t + \delta v_{t+\delta/2}$$
$$v_{t+\delta} = v_{t+\delta/2} - \frac{\delta}{2} \nabla f(x_{t+\delta})$$

? how to compute H(x, v, t) ?

 \rightarrow leapfrog integrator:

$$v_{t+\delta/2} = v_t - \frac{\delta}{2} \nabla f(x_t)$$
$$x_{t+\delta} = x_t + \delta v_{t+\delta/2}$$
$$v_{t+\delta} = v_{t+\delta/2} - \frac{\delta}{2} \nabla f(x_{t+\delta})$$

= symplectic, second-order integrator

? how to compute H(x, v, t) ?

 \rightarrow leapfrog integrator:

$$v_{t+\delta/2} = v_t - \frac{\delta}{2} \nabla f(x_t)$$
$$x_{t+\delta} = x_t + \delta v_{t+\delta/2}$$
$$v_{t+\delta} = v_{t+\delta/2} - \frac{\delta}{2} \nabla f(x_{t+\delta})$$

= symplectic, second-order integrator

bounded error for step size $\delta \in O\left(rac{1}{\sqrt{eta} d^{1/4}}
ight)$

? how to compute H(x, v, t) ?

 \rightarrow leapfrog integrator:

$$v_{t+\delta/2} = v_t - \frac{\delta}{2} \nabla f(x_t)$$
$$x_{t+\delta} = x_t + \delta v_{t+\delta/2}$$
$$v_{t+\delta} = v_{t+\delta/2} - \frac{\delta}{2} \nabla f(x_{t+\delta})$$

= symplectic, second-order integrator

bounded error for step size $\delta \in O\left(rac{1}{\sqrt{eta d^{1/4}}}
ight)$

integration time $t \in O(1/\sqrt{\alpha})$ requires $t/\delta \in O(\sqrt{\kappa}d^{1/4})$ gradient queries

Langevin: $O(\kappa \sqrt{d} \log(1/\varepsilon))$

Langevin: $O(\kappa \sqrt{d} \log(1/\varepsilon))$

Langevin: $O(\kappa \sqrt{d} \log(1/\varepsilon))$

HMC: $O(\sqrt{\kappa} d^{1/4} \log(1/arepsilon))$ (for Gaussians)

Langevin: $O(\kappa \sqrt{d} \log(1/\varepsilon))$

HMC: $O(\sqrt{\kappa} d^{1/4} \log(1/arepsilon))$ (for Gaussians)

! compare with "dimension-free" scaling of $O(\sqrt{\kappa})$ for optimization

LOGCONCAVE SAMPLING QUANTUM AND CLASSICAL SPEEDUP FUTURE DIRECTIONS

 $\sqrt{\kappa}$ -scaling for general logconcave?

$\sqrt{\kappa}$ -scaling for general logconcave?

dimension-free scaling for Gaussian / general logconcave? (e.g., use higher-order integrators)

$\sqrt{\kappa}$ -scaling for general logconcave?

dimension-free scaling for Gaussian / general logconcave? (e.g., use higher-order integrators)

classical and quantum speedups in non-continuous setting? ! MCMC often in discrete graph setting

? replace Hamiltonian dynamics by Schrödinger dynamics ?

$$\frac{\partial}{\partial t}\psi(t) = -i\hat{H}\psi(t)$$

? replace Hamiltonian dynamics by Schrödinger dynamics ?

 $\frac{\partial}{\partial t}\psi(t) = -i\hat{H}\psi(t)$

e.g., can use "quantum tunneling" for nonconvex optimization

? replace Hamiltonian dynamics by Schrödinger dynamics ?

 $\frac{\partial}{\partial t}\psi(t) = -i\hat{H}\psi(t)$

e.g., can use "quantum tunneling" for nonconvex optimization

? replace Hamiltonian dynamics by Schrödinger dynamics ?

 $\frac{\partial}{\partial t}\psi(t) = -i\hat{H}\psi(t)$

e.g., can use "quantum tunneling" for nonconvex optimization

On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks*

Yizhou Liu,[†] Weijie J. Su,[‡] Tongyang Li[§]

THANK YOU!

figure references:

https://www.pokutta.com/blog/research/2018/12/06/cheatsheet-smooth-idealized.html https://link.springer.com/article/10.1007/s11222-012-9373-1 https://www.cs.ubc.ca/ schmidtm/Courses/540-W19/L4.pdf https://www.sciencedirect.com/science/article/abs/pii/S0167473017300693