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588"E

STCONg; := {(G,s,t,15) | Vi,j: N(i,j) < k and N(s,t) > 1} € BQL.

I first (non-promise) language in BQL, not known to be in BPL

For comparison:
® pc-MATINV (a-shma 13]
L4 pC—MATPOW [Fefferman-Remscrim '20]
® quantum state testing [Le Gall-Liu-Wang '23]
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[Allender-Lange '98], [Garvin-Stolee-Tewari-Vinodchandran '11]

.

Few outgoing paths in SC?

If N(s,-) < poly(n), can decide STCON in poly(n) time and
O(log? n) space.

[Lange '97], [Garvin-Stolee-Tewari-Vinodchandran '11]

.
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Open Questions

$1000 reward for a dequantization [All23]

STCON on StU graphs in DSPACE(o(log? n/ log log n))?

Vi j i N(ij) <1

O

® BQL-hardness of STCON-variant?

® Further investigation of quantum algorithms on directed
graphs!
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extra: DAG reduction

DAG reduction

G’ is a DAG
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