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Lecture 4: Hamiltonian simulation

Lecturer: Simon Apers (apers@irif.fr)

Last lecture highlighted the importance of ground states of given Hamiltonians, as well as the
utility of “integrating” Schrödinger’s equation, i.e., implementing the evolution

|ψ⟩ 7−→ eiHt |ψ⟩

for some initial state |ψ⟩, time t and Hamiltonian H. While this evolution is native in “analog”
quantum computers, in this lecture we will see how to implement this evolution in the more common
quantum circuit model. This task is referred to as “Hamiltonian simulation”, and its study has been
a driving force in the field of quantum algorithms.

Conceptually, Hamiltonian simulation builds on the following observations:

1. Many Hamiltonians H can be split up into “simpler” building blocks H =
∑

j Hj .

2. There is a way of combining Hamiltonian simulation of the building blocks eiHjt to obtain the
evolution eiHt.

1 Pauli decomposition

One useful way of breaking up a Hamiltonian into simpler terms is by using the Pauli basis. The
following exercise shows that we can split up any Hamiltonian into a sum of Pauli strings.

Exercise 1 (Pauli basis). Recall the unitary Pauli matrices

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

� Show that the Pauli basis {I,X, Y, Z} forms a basis for the complex 2-by-2 matrices. I.e., any
A ∈ C2×2 can be expanded as A = α1I + αxX + αyY + αzZ.

� Argue that this implies that the n-qubit Pauli basis {I,X, Y, Z}⊗n forms a basis for the 2n-by-
2n matrices.

Such decomposition will be most useful when the number of Pauli strings is small, say poly(n).
This naturally occurs when the interactions are “local”, as is demonstrated in the following exercise.
The exercise is motivated by the use of the quantum adiabatic algorithm for the canonical “max
cut” problem from combinatorial optimization, which requires efficient simulation of the max cut
Hamiltonian.

Exercise 2 (Max cut). For a graph G with vertex set [n] and (symmetric) edge set E ⊆ [n]2, a
maximum cut is described by a subset Z ⊂ [n] that cuts a maximum number of edges (edges crossing
from Z to Zc). Equivalently, it maximizes the cut function

c(A) =
∑

(i,j)∈E

Ii∈A,j /∈A.
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� Identify a subset A with the indicator a ∈ {0, 1}n (i ∈ A⇔ ai = 1). Express the cut function
c(A) as a degree-2 polynomial h in a.

� Rewrite the max cut Hamiltonian H1 = −
∑

z∈{0,1}n c(z) |z⟩ ⟨z| in terms of identity and Pauli-
Z matrices.

This exercise implies that the Hamiltonian showing up in the quantum adiabatic algorithm for max
cut, H(s) = (1 − s)H0 + sH1, can be decomposed into O(n2) Pauli strings, each of which acts
nontrivial on at most 2 qubits.

2 Hamiltonian simulation

From the previous section, we know that any Hamiltonian H can be expanded as a sum of sim-
pler Hamiltonians, H =

∑m
j=1Hj . E.g., for the max cut Hamiltonian (or in fact any “2-local”

Hamiltonian), H consists of m ∈ O(n2) 2-qubit terms. Consequently, for any such Hj , Hamiltonian
evolution eiHjt is a simple 2-qubit gate, and we will assume access to these gates. The key question,
then, is how do we combine the building blocks {eiHjt}mj=1 to obtain eiHt?

Unfortunately, if the Hj ’s do not commute, then we do not have that eiHt = eiH1t . . . eiHmt.
However, by the so-called “Lie-Trotter-Suzuki product formula”, we do have that

eiHt = lim
r→∞

(
eiH1t/reiH2t/r . . . eiHmt/r

)r
.

For finite r, this corresponds to a quantum circuit with mr gates of the form eiHjt/r:

In the following exercise we bound the error incurred for finite r, focusing on the special case
where m = 2.

Exercise 3 (Trotterization). � Assume ∥A∥, ∥B∥ ≤ 1. Use the Taylor series eC = I + C +
O(∥C∥2) for ∥C∥ ≤ 1 to show that

eA+B = eAeB + E, ∥E∥ ∈ O(∥A∥2 + ∥B∥2). (1)

� Assume ∥A∥, ∥B∥ ≤ 1. For r ≥ t, argue that

ei(A+B)t =
(
eiAt/reiBt/r

)r
+ Er, ∥Er∥ ∈ O(t2/r).

Picking r ∈ O(t2/ϵ), it follows that we can ϵ-approximate the Hamiltonian evolution eiHt using
r ∈ O(t2/ϵ) 2-qubit gates. More generally, when m > 2, the scaling becomes O(m3t2/ϵ), which
remains efficient as long as m is poly(n).

We conclude by tying this back to the previous lecture, in which we saw how a circuit model
computation can be encoded into an adiabatic computation. Hamiltonian simulation makes this
exercise in the opposite direction: it shows that an adiabatic computation (more precisely, evolution
by a Hamiltonian) can be simulated in the circuit model. In a particular sense, this shows that
both computational models are equivalent.
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