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Lecture 3: Quantum linear algebra

Lecturer: Simon Apers (apers@irif.fr)

In this lecture we touch on the topic of “quantum linear algebra”. Broadly construed, this is
the use of quantum algorithms to do linear algebraic operations such as matrix powering or linear
system solving.

1 Quantum Hadamard test

Consider a situation where we have access to some “black-box unitaries” U0 and U1. Let U0 |0⟩ =
|ψ0⟩ and U1 |0⟩ = |ψ1⟩. If we are promised that either |ψ0⟩ = |ψ1⟩ or |ψ0⟩ ⊥ |ψ1⟩, can we efficiently
decide which is the case?

The answer turns out to be “yes”, and the solution is a simple quantum algorithm called the
quantum Hadamard test. If we define the controlled unitary

cU = |0⟩ ⟨0| ⊗ U0 + |1⟩ ⟨1| ⊗ U1,

then the quantum Hadamard test corresponds to the following circuit:

Exercise 1.
• Show that from the output of this circuit we can distinguish whether |ψ0⟩ = |ψ1⟩ or |ψ0⟩ ⊥ |ψ1⟩.
• Show that you can build up cU from calls to cUi = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Ui for i = 1, 2.

This a very remarkable fact about quantum algorithms, and strongly contrasts with randomized
algorithms. If we were given two randomized circuits that return n-bit probability distributions p0
and p1, then distinguishing p0 = p1 from p0 and p1 having disjoint supports would generally require
Ω(2n/2) calls to the circuits!

A nice application of the quantum Hadamard test is the graph isomorphism problem. We are
given two n-vertex graphs G0 and G1, and we are asked whether they are isomorphic. I.e., given
their respective adjacency matrices A0 and A1, does there exist a permutation σ of the indices such
that A1 = σ(A0)?

Figure 1: Isomorphic graphs.

1

mailto:apers@irif.fr


Lecture 3: Quantum linear algebra 2

Exercise 2. Assume access to unitaries U0 and U1 such that Ui |0⟩ = |ψi⟩ with |ψi⟩ the uniform
superposition over all possible permutations of Gi’s adjacency matrix Ai. I.e.,

|ψi⟩ ∝
∑
σ∈Sn

|σ(Ai)⟩ .

Argue that the quantum Hadamard test solves the graph isomorphism problem with a single call to
U0 and U1.

2 Linear Combination of Unitaries

If we “postselect” on measurement outcome “0” in the quantum SWAP test circuit, then the output
is proportional to

|0⟩ (U0 + U1) |0⟩ .

Effectively one could argue that the circuit takes the sum of two unitaries (which might no longer
be a unitary). We can generalize this to more unitaries U0, U1, . . . , UN−1 for N = 2n by defining
the controlled unitary

cU =
N−1∑
k=0

|k⟩ ⟨k| ⊗ Uk

and invoking the following circuit (where FN is the N -dimensional Fourier transform):

Exercise 3.
• What is the output of this circuit if we postselect on measurement outcome “0”?
• What is the probability of obtaining outcome “0”?
• What is the output of the quantum phase estimation circuit from Lecture 1 if we postselect on
measurement outcome “0”?

Generalizing this even further, consider a set of nonnegative coefficients c1, c2, . . . , cN satisfying∑
k ck = 1 and define the “select unitary” Usel as any unitary satisfying

Usel |0⟩ =
N−1∑
k=0

√
ck |k⟩ .

Now consider the following circuit, which implements the so-called “linear combination of unitaries”
(LCU) technique:

Figure 2: LCU circuit.

Exercise 4. What is the output of this circuit if we postselect on measurement outcome “0”?
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3 Quantum linear system solving

Consider a linear system Ax = b for some invertible matrix A ∈ CN×N . Given appropriate query
access to A and b, we wish to compute the solution x = A−1b. In a famous work, Harrow, Hassidim
and Lloyd [HHL09] proposed a quantum algorithm that returns a quantum state |x⟩ encoding the
solution in time poly(κ) · polylog(N). Here κ is the condition number of A, defined by the ratio
of the largest over the smallest eigenvalue of A in magnitude. If κ ∈ O(polylog(N)) (i.e., A is
“well-conditioned”) then this is exponentially faster than the usual classical algorithms for matrix
inversion, which take time poly(N).

Exercise 5. We can argue that, without loss of generality, we may assume that A is Hermitian. To
prove this, show that for a general invertible A we can always find a solution of the linear system
Ax = b by solving the alternative Hermitian linear system[

0 A
A† 0

]
y =

[
b
0

]
.

While there are different versions of the HHL algorithm, we will describe the algorithm from [CKS17]
that combines Hamiltonian simulation with the LCU technique. At its core is the existence of an
(approximate) Fourier expansion of the inverse function 1/x (valid for the range 1/κ ≤ |x| ≤ 1) of
the form

1

x
≈ κ

O(κ)∑
k=0

cke
ikx, (1)

where for simplicity we assume that ck ≥ 0 and
∑

k ck = 1. This implies that we can also rewrite
the matrix inverse

A−1 ≈ κ

O(κ)∑
k=0

cke
ikA,

and so A−1 can be approximated by a linear combination of (unitary!) matrix exponentials. This
leads to an algorithm by defining the ck’s in Usel to be those in (1), and picking the unitaries

Uk = eikA.

Notice that we can implement these unitaries using a quantum algorithm for Hamiltonian simulation.
The algorithm is then given by the LCU circuit from Fig. 2.

Exercise 6.
• What is the output of the circuit, when applied to the state |0⟩ |b⟩, and postselected on outcome “0”?
• Argue about the complexity of the resulting algorithm.
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