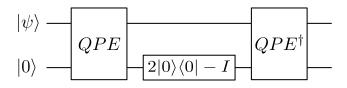
Exercises 1: Random walks and quantum walks

Lecturer: Simon Apers (apers@irif.fr)

Exercise 1 (Reflecting around $|\pi\rangle$). We can use a quantum walk W to reflect around the quantum state $|\pi\rangle$, i.e., implement the map

$$|\psi\rangle = \alpha |\pi\rangle + \beta |\pi^{\perp}\rangle \longrightarrow (2 |\pi\rangle \langle \pi| - I) |\psi\rangle = \alpha |\pi\rangle - \beta |\pi^{\perp}\rangle.$$

Assume that $|\psi\rangle = \alpha |\pi\rangle + \sum_{j} \beta_{j} |v_{j}\rangle$ such that $W |\pi\rangle = |\pi\rangle$ and $W |v_{j}\rangle = e^{i2\pi\theta_{j}} |v_{j}\rangle$ with $1/2 > |\theta_{j}| > \Delta > 0$. We call Δ the spectral gap of the quantum walk. Analyze the following circuit (where QPE represents quantum phase estimation on W to precision $\Delta/2$). How many calls does it make to the quantum walk operator?



Exercise 2 (Quantum walk search). We can implement Grover search using quantum walks by considering the initial state $|\pi\rangle$, a marked element $|\psi_m\rangle$ (for $m \in V$), and the Grover operator

$$(2 |\pi\rangle \langle \pi | -I)(2 |\psi_m\rangle \langle \psi_m | -I).$$

How many times do we have to apply the Grover operator on $|\pi\rangle$ to have a good overlap with $|\psi_m\rangle$? Argue that this yields a quantum walk algorithm for finding a marked element that makes $O\left(\frac{1}{\Delta\sqrt{\pi(m)}}\right)$ calls to a quantum walk.¹

¹Szegedy (FOCS'04) showed that $\Delta \in \Omega(\sqrt{\delta})$ so this becomes $O(1/\sqrt{\delta\pi(m)})$, quadratically improving over the upper bound $O(1/(\delta\pi(m)))$ on the classical hitting time of a random walk.