MPRI 2.34.2: Quantum Information and Cryptography

Exercises 4: Hamiltonian simulation

Lecturer: Simon Apers (apers@irif.fr)

We saw how a circuit model computation can be encoded into an adiabatic computation. Here we describe how an adiabatic evolution (more precisely, evolution by a Hamiltonian) can be simulated in the circuit model.

We consider a simple Hamiltonian of the form $H = H_1 + H_2$. Assuming that we can implement e^{iH_1t} and e^{iH_2t} for various $t \in \mathbb{R}$, we wish to implement e^{iHt} . Unfortunately, if H_1 and H_2 do not commute, then we do not have that $e^{iHt} = e^{iH_1t}e^{iH_2t}$. However, by the Lie product formula, we do have that

$$e^{iHt} = \lim_{r \to \infty} \left(e^{iH_1t/r} e^{iH_2t/r} \right)^r.$$

For finite r, this corresponds to a quantum circuit with r gates of the form $e^{iH_jt/r}$:

$$\boxed{e^{iHt}} \approx \left(\boxed{e^{iH_1t/r}} \right)^r$$

Here we bound the error incurred for finite r.

• Assume Hermitian A_1 and A_2 with $||A_1||, ||A_2|| \le 1$. Use the Taylor series $e^B = I + B + B^2/2 + O(||B||^3)$ for $||B|| \le 1$ to show that

$$e^{A_1 + A_2} = e^{A_1} e^{A_2} + E, \quad \|E\| \in O(\|A_1\| \cdot \|A_2\|).$$
(1)

• Assume $||H_1||, ||H_2|| \leq 1$. For $r \geq t$, argue that

$$e^{i(H_1+H_2)t} = \left(e^{iH_1t/r}e^{iH_2t/r}\right)^r + E_r, \quad ||E_r|| \in O(t^2/r)$$

Picking $r \in O(t^2/\epsilon)$, it follows that we can ϵ -approximate the Hamiltonian evolution e^{iHt} using $r \in O(t^2/\epsilon)$ calls to the simpler evolutions e^{iH_1t} and e^{iH_2t} .