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In this lecture we introduce a new tool in quantum algorithms called transducers. We then use
this tool to prove a remarkable statement about quantum query complexity.

1 Transducers

Transducers were recently introduced by Belovs, Jeffery and Yolcu [BJY24].

Definition 1. Consider a unitary U acting on a direct-sum space A ⊕ B. Let |ξ⟩ , |τ⟩ ∈ A be
normalized, and |v⟩ ∈ B potentially unnormalized. If

|ξ⟩ ⊕ |v⟩ U−→ |τ⟩ ⊕ |v⟩

then U is said to transduce |ξ⟩ into |τ⟩ with catalyst |v⟩. We write |ξ⟩ U
⇝ |τ⟩ and call W = ∥ |v⟩ ∥2

the transduction complexity.

In fact, for every |ξ⟩ there exists a unique |τ⟩ and a (potentially non-unique) |v⟩ such that
U (|ξ⟩ ⊕ |v⟩) = |τ⟩ ⊕ |v⟩. The interest in transducers is the following theorem.

Theorem 1 ([BJY24]). Let |ξ⟩ U
⇝ |τ⟩ with transduction complexity W . There exists a quantum

algorithm mapping |ξ⟩ to a state ε-close to |τ⟩ using κ ∈ O(W/ε2) calls to U and O(κ) other gates.

Proof. First we will reduce the catalyst complexity by effectively calling the transducer multiple
times. To this end, we attach an additional clock register and consider the initial state |ξ̂⟩ =
|ξ⟩ 1√

κ

∑κ−1
k=0 |k⟩. We will (later) construct a unitary V so that

|ξ̂⟩ ⊕ 1√
κ
|v⟩ |0⟩ V−→ |τ̂⟩ ⊕ 1√

κ
|v⟩ |0⟩ ,

with |τ̂⟩ = |τ⟩ 1√
κ

∑κ−1
k=0 |k⟩. This implies that V transduces |ξ̂⟩ into |τ̂⟩ with reduced transduction

complexity W/κ.

This suffices to prove the theorem because we can pick κ ∈ O(W/ε2) so that
∥∥∥ 1√

κ
|v⟩ |0⟩

∥∥∥ ∈ O(ε)

and in particular

|ξ̂⟩ V−→ |τ̂⟩+ (I − V )
1√
κ
|v⟩ |0⟩ = |τ̂⟩+O(ε).

I.e., once the catalyst has norm O(ε) we can just drop it. The resulting algorithm then applies V
to |ξ̂⟩ and returns an ε-approximation of |τ̂⟩.

It remains to construct the unitary V , which we build up by transducing |ξ̂⟩ one part at a time,
each time reusing the same catalyst. For the case κ = 3 this corresponds to the following scheme
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(suppressing the factor 1/
√
κ):

|v⟩ |0⟩+ |ξ⟩ |0⟩+ |ξ⟩ |1⟩+ |ξ⟩ |2⟩ cU−→ |v⟩ |0⟩+ |τ⟩ |0⟩+ |ξ⟩ |1⟩+ |ξ⟩ |2⟩
cS0,1−→ |v⟩ |0⟩+ |ξ⟩ |0⟩+ |τ⟩ |1⟩+ |ξ⟩ |2⟩
cU−→ |v⟩ |0⟩+ |τ⟩ |0⟩+ |τ⟩ |1⟩+ |ξ⟩ |2⟩
cS0,2−→ |v⟩ |0⟩+ |ξ⟩ |0⟩+ |τ⟩ |1⟩+ |τ⟩ |2⟩
cU−→ |v⟩ |0⟩+ |τ⟩ |0⟩+ |τ⟩ |1⟩+ |τ⟩ |2⟩ ,

where cU is U controlled on ancilla register 0, and cS0,k swaps ancilla registers 0 and k controlled on
not swapping |v⟩ (i.e., it is controlled to act on A and not on the catalyst space B). Schematically,
this corresponds to the following:

For general κ, the resulting unitary is

V = cU · cS0,κ · cU · cS0,κ−1 · . . . · cS0,1 · cU.

It effectively makes κ calls to U and maps |ξ̂⟩+ 1√
κ
|v⟩ |0⟩ V−→ |τ̂⟩+ 1√

κ
|v⟩ |0⟩.

Transducers form a sort of “idealized” proxy for actual quantum algorithms, and this allows
them to have many useful properties. E.g., there exist zero-error transducers for many algorithmic
tasks. They also compose particularly nicely, and it has been suggested that these are the more
natural model for designing quantum algorithms (as compared to the circuit model) [Jef25].

2 Quantum Las Vegas complexity

We will use transducers to prove a remarkable (and useful) fact about quantum query algorithms.
Let the following circuit represent a general T -query quantum algorithm mapping input |0⟩ to
output |ψ⟩, with O the (controlled) phase oracle and the Ui’s independent of O.

We use |ψk⟩ = |ψ0
k⟩+ |ψ1

k⟩ and |φk⟩ = |φ0
k⟩+ |φ1

k⟩ to denote the state right before and after the k-th
query, with |ψi

k⟩ = (|i⟩ ⟨i| ⊗ I) |ψk⟩ and |φi
k⟩ = (|i⟩ ⟨i| ⊗ I) |φk⟩ for i ∈ {0, 1} their (unnormalized)

components. We can then write

|ψk⟩ = |ψ0
k⟩+ |ψ1

k⟩
cO7→ |φk⟩ = |φ0

k⟩+ |φ1
k⟩ ,
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where clearly |φ1
k⟩ = O |ψ1

k⟩. Intuitively, the “effective” query weight for the k-th query is then the
squared norm of the k-th “query state”, ∥ |ψ1

k⟩ ∥2. Following this intuition, the quantum Las Vegas
complexity of a quantum query algorithm is defined as

QLV =
T∑

k=1

∥∥ |ψ1
k⟩

∥∥2.
This notion parallels the Las Vegas complexity of a randomized algorithm, which counts its number
of queries in expectation. While bounded by the usual quantum query complexity, QLV ≤ T , the
quantum Las Vegas complexity can be much lower than T . Nonetheless, we can use transducers to
prove the following theorem.

Theorem 2 ([BY23, BJY24]). Any algorithm with quantum Las Vegas complexity QLV can be
turned into a bounded-error algorithm that makes O(QLV ) quantum queries.

Proof. We will construct a unitary V that makes a single query to the oracle O and that transduces
the algorithm input |0⟩ into the output |ψ⟩ with transduction complexity QLV . By Theorem 1
this implies the existence of a quantum algorithm mapping |0⟩ to a state close to |ψ⟩ while making
O(QLV ) calls to U , and so in particular O(QLV ) quantum queries to O.

The construction of V is a variation on the earlier construction. After appending an ancilla
clock register, we will design V so that

|0⟩ |0⟩+
T∑

k=1

|ψ1
k⟩ |k⟩

V−→ |ψ⟩ |0⟩+
T∑

k=1

|ψ1
k⟩ |k⟩ .

This shows that |0⟩ |0⟩ V
⇝ |ψ⟩ |0⟩ with the superposition of all query states

∑T
k=1 |ψ1

k⟩ |k⟩ being the
catalyst, and transduction complexity∥∥∥∥ T∑

k=1

|ψ1
k⟩ |k⟩

∥∥∥∥2 = QLV .

We demonstrate the construction for the case T = 2. Key idea is to apply the oracle once to the
superposition of all query states:

|0⟩ |0⟩+ |ψ1
1⟩ |1⟩+ |ψ1

2⟩ |2⟩
cO−→ |0⟩ |0⟩+ |ϕ11⟩ |1⟩+ |ϕ12⟩ |2⟩ .

Following this by elementary swaps and calls to the Ui’s, we can convert the resulting state into the
goal state |ψ⟩ |0⟩+ |ψ1

1⟩ |1⟩+ |ψ1
2⟩ |2⟩. Schematically, we do the following:

As claimed, the resulting unitary V transduces |0⟩ into |ψ⟩ while making a single oracle call.
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